
Technical heport
CMU/SEI-92-TR-36
ESD-TR42-038

-__ ,_,_ Carnegie-Mellon University

- Software Engineering Institute

~\L

Lnui

Durra: A Task Description
"0 Language User's Manual

(Version 2)
"Dennis L Doubleday

Mario R. Barbacci

December 1992

DTIC'
"FEB 011994/

/ N /0
.,/ "N"\

'\.,..

N!

N•Il I m ll l I

Best
Available

COpy

Carnegie Mellon Unive,sty does no! discriminate and Carregre Melon Un-vers;!y s reouiecd not to disc,,rninate ýn admissor', emolovment or adminstratlion

o! ;Is Drogramns on tne oasis of 'ace ol'o, national ofgi- sex o' hand'cao r violazion of Tite VI of the C-vi Rights Act of 1964. T,tle IX of the Educationa&

Armendtenits o *•972 ard Sect:on SC4 of !Me Re'aDOltarion Act of 1973 or other 'ede'al sta:e or 'ocal aws or executive orders

in adcdtion Canegie Mellon U-'ve'sity does nor discrlinate in admission employment 0o administration of (is Programs on the basis of religion creed

ancesv'y beef age veteran status sexual otentation or n volatjon o4 federal, state or locai laws or executive orders While the federal government does
contrnue to exclide gays lesDians and bisexuals frorm receiving ROTC scholarships or serv'ng in the m'litry ROTC classes on this cannous are available to

all students

r,'ou.'es concern. "g adocatioi of !tese statements snould be directed to the Provost Carnegie Melton Urvers 'y, 5000 Forbes Avenue. Pittsburgh Pa

15213. teleoirnne (412t 268-6684 or the Vce President tor Enrolime-t Carnegie Mellon University. 5000 Forbes Avenue Pittsburgh. Pa 15213. telephone

(412) 261-20t56

Technical Report
CMU/SEI-92-TR-36

ESD-TR-92-036
December 1992

Durra: A Task Description
Language User's Manual

(Version 2)

Accesion For
NTIS CRA&I Dennis L. Doubleday
DTIC TAB Mario R. Barbacci
Un~announced 1]
Justification Distrbfted Systems

By.....
Dist. ibution I

Availability Codes

Avail andlor
Dist Special DTiO QUALITY INSPECTED 5

A4proved for public release.
Distribution unlimited.

94-03135 Software Engineering Institute94-0 135Carnegie Mellon University

1331 1 Pittsburgh, Pennsylvania 15213

94 1 31 217

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The Ideas and findings in this report should not be construed as an official
DoD position. It is published in the Interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsoreby the-U.&Dipartment of Defense.
This report was funded by the U.S. Department of Defense.
Copyright 0 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides aocess to and ransfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center. Ann: FDRA. Cameron Station, Alexandria. VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering.
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

I Introduction 5

2 A Durra Development Scenario 9
2.1 Component Creation Activities 10

2.2 Application Creation Activities 10

2.3 Application Execution Activities 11

3 Getting Started with Durra 13

3.1 Environment Variables 13

3.2 Internet Service Definition Requirements 13

3.3 Durra System Directory Structure 14
3.4 File Naming Conventions 15
3.5 Descriptive Conventions in This Document 16

4 Durra Tools and Runtlme Ubrary 17
4.1 The Library Management Utility 17
4.2 The Compilation Utility 18
4.3 The Compiler 18
4.4 The Cluster Directory Population Utility 19
4.5 The Application Recompilation Utility 20
4.6 The Runtime Library 20
4.7 The Predefined Channel Ubrary 21
4.8 The Cluster Activation Daemon (DurraLauncher) 21

5 Example : An Informal Durra Application Construction Process 23
5.1 The Example Application 23

6 Writing a Durra Application Description 25
6.1 Type Declarations 25
6.2 Port Specifications 25
6.3 Behavioral Specifications 25
6.4 Attribute Specifications 25
6.5 Primitive Component Descriptions 26
6.6 Compound Task Descriptions 26

7 Writing a Durra Task Implementation 31
7.1 The Durra Application Programmers Interface 31

7.1.1 Types and Constants 31
7.1.2 Exceptions 32
7.1.3 Time Query Operations 32
7.1.4 Init and Finish Operations 32

CMU/SEI-92-TR-36 i

7.1.5 Process Attribute Query Operation 33
7.1.6 Port and Type Identification Query Operations 33
7.1.7 Port Status Query Operations 34
7.1.8 Input Operations 34
7.1.9 Output Operations 35
7.1.10 Reconfiguration Support Operations 36

7.2 Example Usage of the DurMrjnterfee Package 37
7.2.1 The Producer Implementation 38
7.2.2 The Consumer Implementation 39

8 Writing a Durra Channel Implementation 43
8.1 The Channel Package Specification Template 43
8.2 The Channel Package Body Template 45
8.3 Example: Our FIFOChannel Implementation 47

9 Durra Configuration Files 53

10 Compiling and Unking a Durra Application 55
10.1 Durra Compilation and Makefiles 55
10.2 Cluster Compilation 57

11 Executing a Durra Application 59

Appendix A VADS Dependencies In Durra 61

Appendix B The DurraInterface Package Specification 63

References 73

Index 75

H CMU/SEI-92-TR-36

List of Figures

Figure 1-1 A Template for Task Descriptions 6
Figure 2-1 Durra Application Development Scenario 9
Figure 3-1 The Durra System Directory Structure 14
Figure 5-1 Dynamic Producer-Consumer Application Structure 24
Figure 6-1 A Primitive Durra Task Description 26
Figure 6-2 Generic Channel and Task Descriptions 27
Figure 6-3 A Producer-Consumer Application Description 27
Figure 6-4 A Producer-Consumer Application Description

Featuring Dynamic Reconfiguration 28

CMU/SEI-92-TR-36 iiW

iv CMU/SEI-92-TR-36

Durra: A Task Description Language User's Manual
(Version 2)

Abstract: This document describes the use of Durra, a task-level application
description language, and its associated toolset. The Durra environment
supports the development of highly reconfigurable distributed Ada applications.
The intended audience for this document is system managers responsible for
Durra installation and Durra application developers.

1 Introduction

Computing environments consisting of loosely connected networks of special and general pur-
pose processors are becoming commonplace. The corresponding trend in software is away
from sequential programs running on large uniprocessor hardware, and toward concurrent
programs distributed across multiple, possibly heterogeneous, platforms. Today, developers
of such applications typically "hard code" the allocation of computing resources into their ap-
plications by explicitly assigning specific tasks to run on specific processors at specific times.
The component tasks of such an application require built-in knowledge about the structure of
the application and the allocation of resources in order to communicate with other tasks. This
coupling of function to structure complicates modification of the application, poses obstacles
to runtime changes in the application structure, and prevents reuse of the tasks in other envi-
ronments. Developers need new tools that allow them to abstract application structure from
function.

This document is a user's manual for Durra [Barbacci 91], a language that alleviates the prob-
lems described above by allowing an application developer to separate the structural and func-
tional aspects of the application, allowing modification to one without requiring a correspond-
ing modification to the other.

Durra is a task-level application description language.1 The basic building blocks of the lan-
guage are the task description, which specifies the properties of an associated Ada subpro-
gram, and the channel description, which specifies the properties of an Ada package imple-
menting a communication facility. (See Figure 1-1 for a Durra task description template.) Task
descriptions may be either primitive or compound. A primitive task description represents a
single thread of control.2 A compound task description is a composition of other task and chan-
nel descriptions. Channel descriptions are syntactically similar to primitive task descriptions al-
though the implementations exhibit different behaviors. Task implementations are active com-
ponents; they initiate requests to send or receive messages by calling procedures provided by

1. Throughout this document, the term task refers to a generalized "thread of contror concept rather than to the
analogous Ada construct, except where noted.

2. The actual Ada code that implements a Durra task may, in fact, be a multitasking program. However, from the
Durra perspective the program is a single throad of control.

CMU/SEI-92-TR-36 5

the runtime environment. Channel implementations are passive components; they wait for and

respond to requests from the runtime environment. Task and channel implementations are

"black boxes," I.e., the internal workings of a component are not a consideration in the con-

struction of a Durra application description.

task taskname (parameter-list)
-- Values for the parameters are provided in task selections
ports

port -declarations
-- A description of the input-output interface of the task

behavior
specification-list
-- Labelled formal specifications of the behavior of the task

attributes
attribute-value-pairs
-- A list of additional properties of the task

components -- (for compound tasks only)
component-declarations
-- A list of task and channel selections

structures -- (for compound tasks only)
component-connection-structure
-- A list of component connections

reconfigurations -- (for compound tasks only)
condition-transition-pairs
-- A list of conditional structure changes

clusters -- (for compound tasks only)
cluster-component-associations
-- A list of named physical groupings of components

ond taskname;

Figure 1-1: A Template for Task Descriptions

A Durra programmer describes an application as a collection of processes (instances of Durra
task descriptions) connected to each other in a graph structure via links (instances of Durra
channel descriptions). Lower level components are used as building blocks for higher level
task descriptions. Application descriptions are simply compound task descriptions that de-
scribe a complete application.

A detailed specification of the language syntax and semantics can be found in the Durra Ref-
erence Manual [Barbacci 91]. We will describe the major concepts of the language in more
detail later in this document, but in the next section we step back from consideration of lan-
guage details in order to consider the larger picture of the Durra application development sce-
nario. In Section 3 we describe the UNIX environment that must be established prior to the
start of application development. Section 4 describes the Durra tools and libraries that are
available to the application developer. In Section 5 we describe an example distributed appli-
cation that will be used to illustrate the Durra application development process. Section 6 pro-
vides a brief introduction to the Durra description language and example descriptions corre-
sponding to our example. In Sections 7 and 8 we describe how implementations of Durra task

6 CMU/SEI-92-TR-36

and channel components are developed. Again we provide some simple implementations
based on the components of our example application. In Section 9 we describe the configura-
tion file, Durra's method for establishing a mapping of the application to physical processing
resources. Section 10 explains how to compile and link a Durra application once the Durra de-

scriptions and Ada implementations have been written. Finally, in Section 11 we show how to

execute a Durra application.

Throughout this document we will use the following definitions:

" channel description - a template written in Durra specifying the properties of
a channel implementing a communication facility. Channel descriptions are
compiled and stored in Durra libraries.

" channel implementation - code written to implement a specific
communication facility for application tasks. Channels are passive
components that react to requests from tasks. Channel implementations are
compiled and stored in object code libraries.

" cluster- a group of tasks and channels linked with Durra runtime library code
and executed as a multi-threaded program. The source code for the cluster-
specific part of a cluster is generated by the Durra compiler. Clusters are
compiled and stored in object code libraries.

" link- an instance of a channel providing communications between two or
more processes.

" port- a logical input or output device of a process or link. Input ports get
messages from other components; output ports send messages to other
components.

" task description - a template written in Durra specifying the properties of a
task implementing a piece of an application. Task descriptions are compiled
and stored in Durra libraries.

" task implementation - code written to implement a piece of an application.
Tasks are active components that generate requests to the channels. Task
implementations are compiled and stored in object code libraries

" process - an instance of a task implementing part of an application. A
process can execute as single program (actually, a one-thread cluster) or as
a thread within a multiple-thread cluster.

CMU/SEI-92-TR-36 7

8 CMU/SEI-92-TR-36

2 A Durra Development Scenario

We see three distinct activities in the process of developing a distributed application using
Durra: (a) the development of components (task~/channel descriptions and implementations),
(b) the development of an application description, and (c) the execution of the application. Fig-
ure 2-1 illustrates this scenario:

Application description (Durra) =a Application execution

.....

.....
...

Po

Durra
Compler rocesor

Clustz!:I

1"11041111,1"UMMIll illi

Ad
Desciptin (urra Copile Imlemetaton (ode

librry lbrar

description (Durra) Compilerloplmentato (code)

decrp ion r (D 1Dura) dplcto e e vop elopmcenta (ode

CMU/SEI-92-TR-36 9

Although we will describe the activities in this order, the actual development process might in-
volve successive iterations over these steps. That is, an application is not necessarily devel-
oped bottom-up as the scenario might seem to imply. The developer could start with some
gross level decomposition of the application into subsystems, and a prototype of the applica-
tion might be developed with these high level components. Over time, these subsystem might
be further decomposed into finer components and the steps repeated as appropriate. The sce-
nario illustrated in the figure is just an illustration of the kinds of activities involved and is not a
fixed prescription.

2.1 Component Creation Activities

In this phase, the developer defines the application components (casks and channels) using
domain specific knowledge. Some components might be domain specific, such as sensor pro-
cessing, map database management, route planning, etc. Other components might be of a
more general nature, such as sorting, array operations, etc. An application component con-
sists of a description and an implementation.

A component implementation is an Ada subprogram (in the case of a Durra task) or package
(in the case of a Durra channel.) For a given task, there may be many possible implementa-
tions, differing in processor type (e.g., Motorola 68020, DEC VAX), performance characteris-
tics, or other attributes. The writing of a task implementation is more or less inCependent of
Durra and involves the coding, debugging, and unit testing of program units on various ma-
chines. Available component implementations are stored in the appropriate object code librar-
ies.

A component description is a template specifying properties of a component implementation:
the types of data it produces or consumes, the ports it uses to communicate with other tasks,
formal specifications of behavior, and other attributes of the implementation.

2.2 Application Creation Activities

In this phase the developer writes an application description that specifies the desired compo-
nents and their interconnection. Syntactically, an application description is similar to a task de-
scription and can be stored in the library as a new component task. This allows the devoloper
to write hierarchical application descriptions.

When the application description is compiled, the Durra compiler identifies clusters of library
task and channel descriptions that meet selection criteria specified by the usur and generates
for each cluster an Ada package body (named Tables) containing data and operations specific
to that cluster. Only these generated package bodies need to be recompiled if the application
description changes. The component implementations are retrieved from the object code li-
brary and linked with the Durra runtime library to create executable programs. The main units
of these programs constitute an additional thread of control within each cluster (i.e., they con-
stitute an additional component process in the cluster, albeit not one specified by the applica-

10 CMU/SEI-92-TR-36

tion developer). These additional tasks will be referred to as the duster managers. The
application developer can specify how component tasks and channels are to be grouped into
clusters. The extreme cases are:

* all components are linked together as one duster, and

* each component is a separate cluster.

The application developer can also specify what clusters run on each processor.

2.3 Application Execution Activities

To execute an application, the developer loads and starts the clusters in the appropriate pro-
cessors. The extreme cases are

"* all dusters execute on one processor, and

"* each cluster executes on a separate processor.
Each cluster's Tables package contains Information about the structure of the other clusters
and the reconfigurations specified by the application developer. This information is used by
the cluster manager to provide communication support for the local application processes.

Application processes communicate with each other through the same interface (procedure
calls to the cluster manager) regardless of process location (i.e., processes within the same
cluster, processes In clusters within the same processor, or processes in clusters in different
processors.) The cluster manager implements the port operations (a subset of the Interface
calls) either as local rendezvous or remote procedure calls depending on the location of the
communicating processes.

CMU/SEI-92.TR-36 11

12 CMU/SEI-92-TR-36

3 Getting Started with

Before one can begin developing Durra applications, it is necessary to set up the Durra envi-
ronment. In this section we describe steps that must be taken to configure the Durra system
in a UNIX environment, and we introduce the user to the system directory structure and file
naming conventions used by Durra tools and libraries.

3.1 Environment Variables

The following environment variables should be defined in the environments of all Durra users:

ADA Defines the root directory of the Ada compilation system being
used.

DALL_VERSION Defines the command name to be used by Durra makefiles
when the dall shell script (see Section 4.2) is invoked.

DURRALOGDIR Defines the directory to which logging information will be written
when runtime logging is requested. See Section 11.

DURRA ROOT Defines the root directory of the Durra system hierarchy. See
Section 3.3.

DURRARTE Defines the root directory of the Durra runtime library. See Sec-
tion 3.3.

3.2 Internet Service Definition Requirements

The Durra system requires the inclusion of a set of Intemet service definitions in the /etc/ser-
vices database. One of the services to be defined is the Durra_Launcher (see Section 4.8).
Its definition should be of the form:

DurraLauncher port-numberludp

The remaining service definitions are for use by Durra clusters at runtime. Each cluster service
definition should be of the form:

DurraClustern port-numbertcp

where n ranges from 1 to the maximum number of Durra clusters allowed by the Durra runtime
(20 by default, though this is modifiable).

The port-numberfor each service should be unique but otherwise is left to the discretion of the
system administrator.

CMU/SEI-92-TR-36 13

3.3 Durra System Directory Structure

adaada

/• channels

S compiler I •durra I

[•-- exampe

I! launcher

Sruntime
dun'x J

Figure 3-1 The Durra System Directory Structure

Figure 3-1 describes the system hierarchy supplied with the Durra distribution. The top level
directory must be Identified by the DURRAROOT environment variable.The subdirectories of
this directory contain the following:

"* adalib : contains Ada source code implementing various abstract data types
and some utility packages.

"* bin : contains the Durra tools described in Section 4. This directory should be
added to the user's path.

"* channels : contains two directories:

• channels/ada : contains the Ada implementations of the predefined Durra
channels

• channels/durra : contains the Durra descriptions of the predefined Durra
channels.

14 CMU/SEI-92-TR-36

"* compiler: contains the Ada source code implementing the Durra compiler.

"* docs : contains documentation and reports about the Durra system in
PostScript format

"* examples : contains example Durra descriptions which can be used as a
learning device and/or a tool for testing your Durra installation.

"* launcher: contains the Ada source code Implementing the Durr_Launcher
(see Section 4.8).

"* misc : contains the "ClusterMakefile" template (see Section 4.4) and the
channel package templates (see Section 8.1).

"* runtime : contains two directories:

"* runtime/lib: contains the Ada source code implementing the portable part
of the Durra runtime and the Durra_Interface package (see Section 7.1).

"* runtime/unix : contains the UNIX-specific portion of the Ada source code
implementing the Durra runtime.

3.4 File Naming Conventions

Over time we have evolved certain file naming conventions that seem to work well for us. The
use of these conventions is not mandatory, although failure to observe the file name extension
conventions will require minor modifications to the compiler and various utility programs.

Ada source code files supplied with the Durra distribution conform to the convention that files
containing specifications end with ".W" and files containing bodies end with "B.a".

It is required that each Durra task or channel description or type declaration be in its own file.
By convention, the file name will use the Durra object name as its root part and will have the
extension ".durra". For example, the task description in Figure 6-1 would be stored in a file
called producer.durra.

When a Durra source file (i.e., a task or channel description, or a type declaration) is compiled,
at least two additional files are generated. One of these is named by the concatenation of the
source file name and the further extension ".TREE". Thus, the file generated for the above ex-
ample would be called producer.durra.TREE. This file contains an intermediate representa-
tion of the Durra description. The intermediate representation simplifies the use of the
description to build more complex Durra descriptions. See Section 6 for more intormation.

The other file always generated during compilation is named by the concatenation of the
source file name and the further extension ".MAKE". Thus, the file generated for the above
example would be called producer.durra.MAKE. This file contains dependency information
which is used by the dmake utility (see Section 4.5) when recompiling a Durra description.

If the Durra description being compiled is a complete application description, additional files
may be generated. Such a description will include at least one cluster specification, and for
each cluster specification the Durra compiler will generate an Ada source file called Tables-

CMU/SEI-92-TR-36 15

B.a. Such files will each contain a cluster-specific body for package Tables, which is to be
linked with Durra runtime library packages to form an executable duster program. The format
of this package body is described in A Description of Cluster Code Generated by the Durra
Compiler [Doubleday 91].

The dllbrary utility (see Section 4.1) is used to create and modify Durra library files. Each of
these files is named ".DLBRARY".

3.5 Descriptive Conventions In This Document

The convention used throughout this document when describing textual commands is that ac-
tual text is written in bold, and text to be replaced with actual text is written in italic. Optional
text is {enclosed in braces). References to Durra specification text or Ada source code text
within the running text of the document are written in italic as well. In program examples, Ada
source and Durra source are written In Courier, with Durra reserved words written in bold

Courier.

16 CMU/SEI-92-TR-36

4 Durra Tools and Runtime Library

In this section we describe in detail the development support tools provided for the Durra ap-
plication developer and the Durra runtirne library, which is linked with developer-provided com-
ponent implementations to form executable duster programs.

4.1 The Library Management Utility
The dllbrary command Implements a modest library management utility:

dllbrary { options) { file-or-directory-name I

The Durra library is a text file containing information about the Durra compilation units stored
in the library and pointers to other libraries containing additional units. When the compiler
searches for previously compiled descriptions, It looks first in the current library and then in the
libraries referenced in the current library, and so on (in depth-first fashion). The library file is
always named .DUBRARY and hence there can be at most one library file per UNIX directory.
Compilation units (or symbolic links to them) stored in a library must always reside In the same
UNIX directory as the .DUBRARY file.

dllbrary -c

When used with the -c option, dllbrary creates a new library (or reinitializes an existing one).
This command is normally used when starting the development of a new application or library
of reusable components.

dlibrary -a directory-name

When used with the -a option, dllbrary extends the library by adding a pointer to another di-
rectory to be searched for imported component descriptions or type declarations.

dlibrary -r directory-name

This is the complement of the -a option. When used with the -r option, dlibrary removes a
pointer to another directory. Component descriptions and type declarations from the library file
in that directory are no longer accessible from this library.

dlibrary -d Dunra-source-file-name

When used with the -d option, dllbrary deletes a component description or type declaration
from the library (the source file is not disturbed.) Normally there is no need to delete library
entries using this option because the compiler takes care of insertion and deletion of compo-
nent descriptions and declarations.

CMU/SEI-92-TR-36 17

4.2 The Compilation Utility
The dall command Is a convenience shell script utility which invokes the Durra compiler (see
section 4.3) to process a file or group of files:

doll { compiler-options) file-1 (file.2 file-3 ... file-n)

All compiler options are passed through to the compiler unchanged. If multiple Durra source
files are specified, then any compiler options specified apply to the compilation of each of the
files. The dall command permits the user to specify only the root of each Durra source file
name, omitting the .durra extension, which will be added automatically by dall.

The Durra compiler writes the compiled form of each source file to Its standard output. The
dall command Is responsible for directing the standard output of the compilation to the appro-
priate ".TREE" file (see Section 3.4) and for updating the Durra library with the new Durra com-
ponent. For this reason, the Durra compiler Is almost always invoked Indirectly via the dall
command.

4.3 The Compiler
The Durra compiler may be invoked directly via the durra command:

durra { options) Durra-source-file-name

The Durra-source-file-name is the name of a text file containing Durra source code. By con-
vention, the file name should have the ".durra" extension. The root name of the file may be
different from the name of the Durra component. There are at least two outputs of any suc-
cessful Durra compilation:

"* the intermediate description of the Durra component, which is written to the
standard output of the compiler (but see Section 4.2), and

"* a text file, for use with make(l), which is used for version control of the Durra
application. The file is given the name "Durra-source-file.MAKE". For details,
see Section 10.

durra -c configuration-file-name

The -c switch to the compiler specifies a configuration file (see Section 9) to be used when
compiling the Durra source file. If no configuration file is specified at compile-time, the compiler
wams the user, but it is not an error. The configuration file name must immediately follow the
switch with no intervening space.

durra -g

The -g switch requests Ada code generation. It Indicates that the compiler should generate
one Tables package body for each duster in the application description. It is an error to specify
this switch when compiling a description that is not a complete application description.

18 CMU/SEI-92-TR-36

durra -r cluster-root-directory

The -r switch specifies a directory that will be the root directory for the generated Tables pack-
age body for each cluster in an application description. The directory name must immediately
follow the switch with no intervening space. When the compiler generates cluster code, it cre-
ates a directory for each Tables package body. The directory name is the name of the cluster.
Each of these directories is created as a subdirectory of the directory specified with this switch.
If code generation is requested and no cluster-root-directory is specified, then the Durra com-
piler uses the current working directory as the root.

durra -m

The -m switch is used to request that source code lines with multiple errors be marked with
multiple error messages. The default is to print at most one error message per source code
line.

durra -f -G -I -n -p -s -t

These switches are documented here for completeness, though they are not typically needed
by users of the Durra compiler. They are for activating traces used to debug various parts of
the compiler itself. Compiler bug fixers use -f to debug the lexer, -G to debug the code gener-
ator, -I to debug the library reader, -n to debug the symbol table processor, -p to debug the
parser, -s to debug the semantic phase, and -t to debug the intermediate language tree pro-
cessor.

4.4 The Cluster Directory Population Utility

The dmkllb command is a shell script utility used to populate the directories created by the
Durra compiler during cluster generation with additional files required for compilation of the
clusters:

dmkllb { -m Makeffile-name)

The Durra compiler creates subdirectories to hold each of the Tables package bodies it has
created for a particular application. Each of these directories needs a Makefile for use by the
make(l) command as part of the framework for maintaining up to date versions of the clusters.
Since these Makefiles are almost identical for every cluster, we supply a canonical Cluster_-
Makefile (in directory '$DURRAROOT/misc") which can be modified to the needs of individ-
ual applications. Where indicated and necessary, the user should create a new version of the
"ClusterMakefile," add to the Ada path the names of any Ada libraries which will be needed
for compilation of this application, and save the new makefile. With the -m switch, the user
specifies the name of this makefile. The dmkllb script copies the Makefile into each of the
cluster directories. If the switch is omitted, dmkllb copies the file named "Makefile" in the cur-
rent working directory. Note that dmkllb should be used with care, since it assumes that every
subdirectory in the current working directory is a cluster directory. The best practice is always

CMUISEI-92-TR-36 19

to name a cluster root directory when compiling an application description, and then to put no
other subdirectories under the cluster root directory.

In the SEI environment, the cluster directories need additional subdirectories, the names of
which are based on the host architecture, to allow for compilation for different host environ-
ments. dmkllb currently creates subdirectories named ".sun4" and u.sun3" under each cluster
directory. These subdirectories contain separate Ada libraries for each supported architecture.
Users should modify dmkllb to create only the subdirectories needed for their environments.
No subdirectories are needed at all if only one host architecture is supported.

4.5 The Application Recompilation Utility
The dmake shell script utility invokes the make(l) command to keep Durra applications up to
date:

dmake Durra-source-tile-name-root { target)

The dmake command takes as its argument the name of a Durra source file. The ".durra" ex-
tension will be appended to the name if it is not explicitly specified. dmake assures that the
latest version of the file and of all dependent files have been compiled. This utility is strictly for
convenience and does nothing that could not be done directly with the make(l) command. The
two commands below are equivalent:

dmake example world
make -4 example.durra.MAKE world

The optional target parameter is simply passed through to the make(l) command. The target
name must correspond to one of the target names in the ".MAKE" file. Since all Durra make-
files have similar formats, there is a standard set of these target names (see Section 10).

4.6 The Runtime Library

The Durra runtime library Is supplied with the Durra distribution In directory Identified by the
environment variable $DURRARTE. It depends on additional Ada source code (abstract data
type implementations) in directory $DURRAROOT/adalib. The runtime library (which in-
cludes the cluster main unit) is linked with each compiler-generated Tables package body to
create a cluster executable program.

The DurraInterface package is included in the runtime library. This is the application program-
mer's interface to the Durra runtime. It is described in detail in Section 7.1.

4.7 The Predefined Channel Library

A collection of predefined channel specifications and implementations are included with the
Durra distribution. The Durra specifications of the channels are in "$DURRAROOT/chan-
nels/durra" and the Ada implementations are in "$DURRAROOT/channels/ada."

20 CMU/SEI-92-TR-36

As of this writing, the following channel implementations are provided:

"* FIFO_Channel

This channel Implements a FIFO communication buffer. It allows for one
input port and one output port.

"* MergeFIFO

This channel Implements a FIFO-merge communication buffer. A mes-
sage arriving at any of the input ports is sent to all output ports in FIFO
order. It allows for up to 10 input ports and one output port. The maximum
number of ports is easily modified in the specification of the package.

"* Broadcast

This channel implements a broadcast communication buffer. A message
arriving at the Input port Is sent to all output ports In FIFO order. It allows
for up to 10 output ports and one input port. The maximum number of in-
put ports is easily modified in the specification of the package.

"* MergeBroadcast

This channel implements a merge-broadcast communication buffer. A
message arriving at any of the input ports is sent to all output ports in FIFO
order. It allows for up to 10 input ports and up to 10 output ports. The max-
imum number of ports is easily modified in the specification of the pack-
age.

"* Exclusive_MergeBroadcast

This channel implements an exclusive merge-broadcast communication
buffer. A message arriving at the Ah input port is sent to all except the Ath
output ports In FIFO order. It allows for up to 10 Input ports and up to 10
output ports. The maximum number of ports is easily modified in the spec-
ification of the package.

Although it is simple to expand the maximum number of ports a channel may handle, care
should be exercised that the maximum not be made unduly large. There is a performance pen-
alty associated with a larger number of potential ports, since each potential port must be as-
sociated with an Ada task entry call, even if the port is not used.

4.8 The Cluster Activation Daemon (DurraLauncher)

The DurraLauncher is a daemon process which should be running on any processor that is
to participate in the execution of a Durra application. When the master cluster Is started from
thq shell by the user, it contacts the DurraLauncher on each host where a subordinate cluster
is expected to run and tells it to start the cluster. The master Informs the DurraLauncher of
the location of each executable image that It is to start. If the user wishes to avoid using the
DurraLauncher, there is a command line argument (see Section 11) which can be passed to
the master cluster which tells it not to try to launch the other clusters. In that case, each cluster
must be started by hand.

CMU/SEI-92-TR-36 21

22 CMU/SEI-92-TR-36

5 Example : An Informal Durra Application
Construction Process

In this section and following ones we describe the process of developing a Durra application,
including:

"* the specification in Durra of the components of the application (Section 6),

"* the coding of the Ada implementations of those components (Sections 7 and 8),

"* the use of a configuration file to map clusters to physical processor resources
(Section 9),

"* the compilation and linking of the Durra and Ada elements into executable
Ada programs called clusters (Section 10), and

"* the execution of the application (Section 11).

This manual is primarily intended as a guide to use of the Durra system and not as a tutorial
on distributed system requirements specification and design. Therefore, we assume for our
purposes the existence of a set of requirements and a high-level design derived from those
requirements. The abstract components of the system and the dataflow paths will already
have been identified in this design, and we can concentrate on expressing this abstraction in
the form of a Durra application description.

5.1 The Example Application

We have chosen a dynamic producer-consumer application to illustrate Durra development
since this application is a simple one which can be described quite easily and yet demon-
strates the most important features of the Durra system.

The example application consists of a task that produces messages, two tasks that consume
messages, and a channel that relays messages from the producer to a consumer in FIFO or-
der. These components operate in two distinct runtime modes, or configurations (see Figure
5-1). In the initial configuration, the producer sends messages to the first consumer until the
first consumer indicates to the Durra runtime that it has consumed all the messages it requires.
The second consumer is inactive during this configuration. The Durra runtime then reconfig-
ures the application so that the second consumer begins receiving the messages and the first

CMU/SEI-92-TR-36 23

consumer Is made inactive. When the second consumer has finished, the application termi-
nates.

a) Initial Configuration

b) Second Configuration

Figure 5-1 Dynamic Producer-Consumer Application Structure

24 CMU/SEI-92-TR-36

6 Writing a Durra Application Description

In this section we give more detail about the semantics of the various parts of a Durra compo-
nent description and show how Durra allows the programmer to specify the structure, both
static and dynamic, of a distributed application. During the following discussion, refer to the
task description template presented in Figure 1-1.

6.1 Type Declarations

Durra data type declarations define either a size type or a union type. A size type declaration
associates an identifier with a data size (or a range of data sizes) expressed in bits. A union
type declaration defines a new type as the union of one or more previously declared types.
This type concept is analogous to our "black box" treatment of tasks-no semantic information
other than the type name and the size of the data Is derived from a type declaration. Here are
some examples of Durra type declarations:

type byte is size 8;
type scalar is size 4*sizeof(byte);
type message is union (byte,scalar);

6.2 Port Specifications
A component's input/output interface is specified by the ports section of its description. Ports
are named, unidirectional, locally-defined conduits through which processes may transmit and
receive data. Ports have a Durra data type associated with them to allow semantic checking
of intercomponent port connections.

6.3 Behavioral Specifications

The behaviorsection of the component description includes zero or more formal specifications
of the behavior of the component's actual implementation. These specifications are not inter-
preted by the Durra compiler directly, but by associated tools. Although behavioral specifica-
tions are not part of the Durra language, a Durra component description provides a convenient
placeholder for such specifications. Component descriptions containing behavioral specifica-
tions may then be used as components of an application description. A specification analysis
tool is thus provided with a framework for reasoning about the composition of the specifica-
tions within an application architecture.

6.4 Attribute Specifications
The attributes section defines additional properties of the component, such as version number
or type of processor required. A primitive task description must be associated (via an attribute
value) with a specific Ada procedure that is its implementation.

CMU/SEI-92-TR-36 25

6.5 Primitive Component Descriptions
Figure 6-1 Is an example of a primitive Durra task description. The task producer has one out-
put port for data of type message. It is intended to run on a Sun4 processor, and Its implemen-
tation is the Ada procedure "producer" In the library "/usr/durra/srclib".

task producer
ports

output : out message;
attributes

processor - 'sun4";
procedurename - "producer";
library - "/usr/durra/srclib";

end producer;

FIgure 6-1: A Primitive Durra Task Description

A channel description is always primitive and is associated with a specific Ada package that
implements it. Channels are intermediary processes which control the flow of data between
user processes. Channel descriptions and implementations for many frequentiy used commu-
nication disciplines are provided as part of the Durra support environment. These include FIFO
and priority queue, broadcast, and merge, among others. Additional channel implementations
may be provided by application developers to suit specialized application needs. Such devel-
oper-provided implementations must be written with care, however, since channels are re-
quired to present a uniform Interface to the Durra runtime and to follow established Durra run-
time practice in storage management and blocking behavior. See Section 8 for details.

Both task and channel descriptions may be parameterized to allow for more flexible use of
components. For example, one instance of a broadcast channel may be defined to have 3 out-
put ports and another instance to have 10 output ports. Figure 6-2 contains descriptions of a
generic channel (fifo) and a generic task (consumer). Each has a formal parameter that deter-
mines the data type of messages it can handle. The buffer_size parameter for the ft channel
specifies the number of messages that can be buffered by each Input port of the channel. Pa-
rameter values are supplied by task/channel selections. Selections are templates (Identical to
primitive description templates) that are used in compound task descriptions to select lower
level components with the desired properties.

6.6 Compound Task Descriptions
A compound task description must include additional information about its structure. Its com-
ponent processes and links are defined in its components section and the manner in which
they are logically connected (which may vary dynamically) is specified in Its structures section.
If the structure of the compound task is allowed to vary, then there must be a reconfigurations
section that describes a set of structural changes and the conditions under which the changes
will occur. The clusters section specifies the physical grouping of components into executable

26 CMU/SEI-92-TR-36

channel fifo(msgtype: identifier,buffersize: integer)
ports

input: in msg_type;
output: out msg_type;

attributes
processor - "sun4";
bound - buffer-size;
packagename - "fifochannel";
library - "/usr/durra/channels'o;

end fifo;

task consumer (msg_type:identifier)
ports

input: in msgtype;
attributes

processor - "sun4m;
procedurename - "consumer";
library - "/usr/durra/srclib";

end consumer;

Figure 6-2: Generic Channel and Task Descriptions

images, which may well be orthogonal to the logical connections described In the structures
section.

In Figure 6-3, we provide a Durra description of the classic producer-consumer problem as an
example of a compound task description which also happens to be an application description.
The building blocks for the task producer_consumerare the primitive components identified in
Figure 6-1 and Figure 6-2. The c and bufferdeclarations in the components section are exam-

task producerconsumer
components

p: task producer;
c: task consumer(message);
buffer: chanel fifo(message,10);

str-ture
L• : 1'egin

baseline p, c, buffer;
buffer: p.output >> c.input;

end L1;
clusters

cl : p, buffer;
c12 : c;

end producerconsumer;

Figure 6-3: A Producer-Consumer Application Description

CMU/SEI-92-TR.36 27

pies of component selections that supply arguments to bind values to the formal parameters
of the selected descriptions. The structure section in Figure 6-3 is very simple. In Durra, the
structure of an application is described as a collection of labelled configuration levels, which
may be either nested or independent. There is only one configuration level (Li) in this appli-
cation description. The baseline statement defines which processes and links are active at a
given level. Intercomponent connections are expressed in terms of the link implementing the
connection. Thus, the link bufferconnects the port p.outputto the port c.input. The Durra com-
piler ensures that all ports are connected and that they are connected to ports of the proper
data type and direction.

The Durra programmer specifies the distribution of application components by assigning them
to virtual nodes called clusters. The clusters section of the description specifies that process
p and link bufferwill be physically grouped together at runtime, but process cwill be linked into
a separate executable program. This concept will be discussed in more detail in Section 10.

We require a more complex application description in order to demonstrate Durra's ability to
express dynamic reconfiguration requirements.Figure 6-4 is an extension of the description in

task dynamic_producerconsumer
components
p: task producer;
cl, c2: task consumer(message);
buffer: channel fifo(message, 10);

structure
LI: begin

baseline p, cl, buffer;
buffer: p.output >> cl.input;

L2: begin
include c2;
exclude cl;
buffer: p.output >> c2.input;

end L2;
end Li;

reconfigurations
enter -> LI;
Li -> L2 when signal(ci, 1);
L2 -> exit when finish(c2);

clusters
c1l : p, buffer;
c12 : cl, c2;

end dynamic_producerconsumer;

Figure 6-4: A Producer-Consumer Application Description
Featuring Dynamic Reconfiguration

Figure 6-3. One new component, a second instance of the consumer task, has been added.

The structures section in this example has been expanded to include a second configuration

28 CMU/SEI-92-TR-36

level, L2, which is nested within level L i. This level incorporates the new component, c2, and
excludes a component from L1, ci. Since process p and link buffer are not explicitly excluded
from the nested configuration description, they survive into the new configuration. In the new
configuration, port cl.input is disconnected and port c2.input is now connected to the output
of buffer. This structural specification corresponds to the application structures shown graph-
ically in Figure 5-1. It is helpful to think of the structures section in an application description
as a variant data record which describes the static structure of the application at each config-
uration level. The structures section implies nothing about the transition between levels; that
is the purpose of the reconfigurations section.

The reconfigurations section of the dynamic producer_consumer application description pre-
scribes the conditions under which the configurations specified in the structures section shall
be entered. Transition from one configuration to another is indicated by a configuration name
pair on opposite sides of an arrow operator. When the application is in the configuration on the
left-hand side of the arrow, the application is eligible to reconfigure to the configuration on the
right-hand side of the arrow. A condition is usually associated with the transition, as in the tran-
sition from L I to L2 in Figure 6-4. In this particular case, the transition will occur when the Durra
runtime receives a signal (see Section 7.1.10) from process cl. Durra assigns no semantic
content to particular signal values; the interpretation of such signals is a function of the appli-
cation des, iption. The transition to configuration L I is a special case-the keyword enter in-
dicates that L I is to be entered unconditionally at application start-up. The transition to the exit
configuration from L2 indicates that this application will terminate when process c2 has called
the Finish operation provided by the Durra runtime (see Section 7.1 A).

CMU/SEI-92-TR-36 29

30 CMU/SEI-92-TR.36

7 Writing a Durra Task Implementation

In this section we describe the Durra services available to an Ada program through the appli-

cation programmer's Interface (API) to the Durra runtime. We then show how to use those ser-

vices to write implementations of the producer and consumer tasks used in our example
application.

Note that for purposes of exposition we have shown the development of all Durra component

descriptions before the development of the component implementations. This is not intended
to imply that this is the only or even the preferred sequence of activities. It is perfectly reason-

able to develop all implementations first or to interleave component implementation and de-
scription development activities.

7.1 The Durra Application Programmer's Interface

The Durra runtime library provides an Ada package called Durra_Interface. This package must
be "withed" by all Durra component Implementations. It is the API to Durra runtime services.
In this section we will describe the services provided by DurrajInterface. For a complete listing
of the package specification, see Appendix B.

7.1.1 Types and Constants

type TypeID is private;
type InputPortID is private;
type OutputPort_ID is private;
type ProcessID is private;

subtype Signal-Range is DT.SignalRange;
subtype Message_Priority is DT.MessagePriorityRange;

NULLTYPE ID : constant TypeID;
NULLMESSAGE_PRIORITY : constant Message_Priority;

Durra types, ports, and processes have runtime handles that uniquely identify them. The pri-
vate type declarations shown above are the types that represent those handles. The subtype
SignalRange defines the range that application processes may use for signals to the Durra
runtime (currently defined as the range of the predefined Ada type Integer.) The subtype Mes-
sage_Priority defines the range of priorities that application processes may assign to individual
messages as they are sent (currently defined as the range of the predefined Ada type Natural.)
The constants above define distinguished null values for the types Type ID and MessageP-
riority.

CMU/SEI-92-TR-36 31

7.1.2 Exceptions
BadPortName : exception;
BadPortID : exception;
Bad_ProcessID : exception;
Bad TypeName : exception;
Bad_Type_ID : exception;
Uninitialized : exception;
Already_Initialized: exception;

The exceptions Identified above are exported by Durra_Interface. The first five of these am
ralsed when Invalid parameters are passed to Dwra_Interface operations. A1readynltiazed
Is raised by the kil operation (see Section 7.1.4) when it has already been called by a process.
Uninitialized is raised when any other operation Is called before Init has been called.

7.1.3 Time Query Operations
function Get_ApplicationTime return DURATION;

function GetProcess_Time (Process : in Process_ID) return DURATION;

function GetDayTime return DURATION;

This group of operations queries the Durra runtime for various time values (expressed as the
Ada Duration type.) GetApplcaton_7lme returns the time elapsed since the start of the ap-
plication of which the calling process Is a component. Get_ProcessTinme returns the time
elapsed since the start of the calling process. Get-Day_77me returns the time elapsed since
midnight of the current day.

7.1.4 Init and Finish Operations
procedure Init (TaskSequenceNumber : in POSITIVE;

Process_Identifier : out Process_ID);

procedure Finish (Process : in Process_ID);

The Initprocedure announces the presence of the calling process to the Durra runtime. It must
be the first Durra service requested by any Durra process. The Finish procedure Informs the
runtime that the calling process has finished Its computation and is terminating. It must be the
final Durra service requested by any Durra process.

On calling Init, a process must pass as the TaskSquence_Number parameter the positive
scalar value it has received from the Durra runtime at process activation time. The Inftproce-
dure returns a unique Process ID for the calling process in the parameter ProcessIdentifier.
This Process_ID is required as an input argument by all other Durra operations (except the
Get_Applicaton_Time and GetDayTrme operations, which am not process-specific.)

32 CMU/SEI-92-TR-36

7.1.5 Process Attribute Query Operation
function GetAttribute (Process : in Process_ID;

Attribute Name : in STRING) return STRING;

The Get_Attribute function returns the string value associated with the process attribute name
specified by the AttributeName parameter. Attribute names are case-insensitive. If no such
attribute has been specified for this process, GetAftribute returns a null string.

7.1.6 Port and Type Identification Query Operations
procedure GetPortId (Process : in Process_ID;

PortName : in STRING;
Port : out InputPortID;
DataSize out NATURAL;
PortTypeID: out TypeID);

procedure GetPortId (Process : in Process_ID;
PortName : in STRING;
Port : out OutputPortID;
DataSize out NATURAL;
PortTypeID: out Type_ID);

procedure GetTypeId (TypeName in STRING;
Data-Type : out TypeID;
T'-e_Size : out NATURAL);

Just as processes have unicue IDs supplied by the Durra runtime, so do Durra ports and
types. The Get_Portid and Get_Typeld operations are used to acquire these identifiers.

The Get_Portid operation Is overloaded to return distinct identifier types for input ports and
output ports. In both versions, the calling process passes in a string, Port_Name, which is the
same as the name given to a port of the calling process in the Durra description. If no port
with the specified name and dataflow direction exists, GetPortid raises the BadPortName
exception. Otherwise, it returns the correct type of PortID in parameter Port and the TypeID
of the Durra type associated with the port in parameter Port_Type ID. it also returns the max-
imum size (in bytes) of data allowed to pass through the port in parameter DataSize. If the
data has no fixed maximum size (i.e., it is a variable length data type), then by convention the
value of Data_Size on return will be 0.
When calling the Get_Typeld operation, the process passes in a string, TypeName, which is

the same as the name given in a type declaration in the Durra application description. If no
type with the specified name exists, GetTypeldraises the Bad_Type Name exception.Other-
wise, it returns the TypeLID in parameter DataType. It also returns the maximum size (in
b)les) of objects of the type in parameter TypeSize. If objects of the type have no fixed max-
imum size (i.e., it is a variable length data type), then by convention the value of Type_Size on
return will be 0.

PortIDs are only unique within the context of the process, so it is an error to obtain a local
Port ID and pass that identifier to another process.

CMU/SEI-92-TR-36 33

7.1.7 Port Status Query Operations
procedure TestInputPort

(Process in ProcessID;
Port in InputPortID;
Typeof_Next_Input out TypeID;
Size of NextInput out NATURAL;
Inputs_Available out NATURAL);

procedure TestOutputPort (Process : in Process_ID;
Port : in OutputPortID;
SpacesAvailable : out NATURAL);

Sometimes a Durra process will need to query the states of its local ports. For that reason the
Durra API provides the TestLInputPort and TesLtOutput_Port operations.

For a given Input_Port_ID In parameter Port, Testlnput_Port returns the number of messag-
es currently available to be read at that port in the parameter InputsAvailable. If Inputs_Avail-
able is nonzero, then the procedure also returns the TypeID of the next available message
in Type ofNextlnput and the size (in bytes) of the next available message In SizeofNex-
Linput. Otherwise, both parameters will have the value 0 upon return.

The Test lnputPort operation can be useful when the process needs to attempt input only
when It can be assured that it will not block. If TestInputPort returns a positive value in In-
puts.Available, then at least that many Input operations can be done on that port without fear
of blocking. Test lInput Port Is also useful if the data passing through the port are objects of a
variable size type or a union type. In such a case the process may need to know the base type
or the actual size of the data in advance of any attempted Input operation in order to know
which buffer to use for data storage.

For a given OutputPort ID In parameter Port TestOutputPort returns in the parameter
SpacesAvailable the minimum number of messages that can be sent to that port before fur-
ther output operations may cause the process to block.

For example, a process may be written so that it alternates a sequence of output operations
with other processing. The programmer does not wish the process to block while trying to send
output messages. The process can use the Test_OuLputPort operation to determine how
many output operations can safely be done, then send that many messages, and then perform
the other processing.

34 CMU/SEI-92-TR-36

7.1.8 Input Operations
procedure Get Port (Process : in ProcessID;

Port : in InputPortID;
Data : in System.Address;
Data Size out NATURAL;
DataType out TypeID);

procedure GetPort (Process : in Process_ID;
Port : in Input Port ID;
Data : in System.Address;
Data Size : out NATURAL;
Data-Type : out TypeID;
Got Data : out BOOLEAN);

The two overloaded Get_Port operations provide the message reception capability In Durra.
A call to the first version will cause the calling process to block for potentially unbounded time
If no message is available at the specified port. A call to the second version will never cause
the process to block for potentially unbounded time* there may be a brief blocking overhead
related to process scheduling or remote communication.

In both versions, the calling process supplies an Input_Port_ID In parameter Port and the ad-
dress of a buffer where the received message should be stored in parameter Data. In the
blocking version, when GetPort returns the parameters DataSize and DataType will con-
tain the size (in bytes) and the Durra Type ID, respectively, of the message received. In the
non-blocking version, if GetPort returns with the value True in the parameter GotData, then
DataSize and Data_Type will contain the same information as in the blocking version. If
GetPort returns with value False In parameter GotData, then there was no data currently
available and parameters DataSize and Data_ Type will contain values 0 and Null TypeID,
respectively.

Note that non-blocking reception of messages can be accomplished using either the non-
blocking Get Port operation or a combination of TestInputPort and the blocking GeotPort
operation. The latter will likely be slightly more efficient in the case where messages arrive in-
frequently. The former will likely be much more efficient when messages are expected to be
available almost all the time.

7.1.9 Output Operations
procedure SendPort (Process : in Process_ID;

Port : in OutputPort ID;
Data : in System.Address;
Data Size : in NATURAL;
DataType : in Type_ID :- NULL TYPEID;
Priority : in Message_Priority

: NULLMESSAGEPRIORITY);

CMU/SEI-92-TR-36 35

procedure Send Port (Process : in Process_ID;
Port : in Output PortID;
Data : in System.Address;
Data Size : in NATURAL;
DataSent : out BOOLEAN;
DataType : in TypeID :- NULLTYPEID;
Priority : in MessagePriority

:- NULLMESSAGEPRIORITY);

The two overloaded Send Port operations provide the message sending capability in Durra.
A call to the first version will cause the calling process to block for potentially unbounded time
if no space Is available in the buffer associated with the specified port. A call to the second
version will never cause the process to block for potentially unbounded time; there may be a
brief blocking overhead related to process scheduling or remote communication.

In both versions, the calling process supplies an Output_PortID in parameter Port, the mes-
sage's sending address in parameter Data, the size (in bytes) of the message in parameter
DataSize, the Durra TypeID of the message in parameter DataType, and the priority of the
message in parameter Priority. In the non-blocking version, when SendPort returns the pa-
rameter, DataSent indicates whether or not the data was actually sent. If it was not sent, then
the operation can be retried later.

In either version, the Data Type and Priority parameters have default values of Null_TypeID
and NullMessagePriority, respectively. It is recommended practice to supply an actual
Type ID whenever possible. By convention, the Durra runtime omits type-checking of mes-
sages sent with a Null_Type ID. We have found this useful when generating generic task im-
plementations from formal specifications. The programmer sacrifices some type safety and
runtime speed (because storage management cannot be optimized) when using this conven-
tion.

Message priorities are subordinate to process priorities; that is, the high-priority process wish-
ing to send a low-priority message will get priority over the low-priority process sending a high-
priority message. In any event, message priorities will have no effect unless the link associated
with the output port respects message priorities. In our UNIX implementation, which utilizes
sockets and setup protocol, message priorities are not respected for network communications,
either.

Note that non-blocking output of messages can be accomplished using either the non-blocking
SendPort operation or a combination of TestOutputPort and the blocking SendPort oper-
ation. The latter will likely be slightly more efficient in the case where the output buffer is fre-
quently filled to capacity. The former will likely be much more efficient when the output buffer
is expected to be less than full almost all the time.

36 CMU/SEI-92-TR-36

7.1.10 Reconfiguration Support Operations
procedure Raise Signal (Process : in ProcessID;

SignalNumber : in SignalRange);

procedure Safe (Process : in ProcessID);

The Durra approach to dynamic reconfiguration of the application structure at runtime relies
on application cooperation with the runtime. The RaiseSignal and Safe operations provide
the application with the means to support dynamic reconfiguration activities.

A Durra process may use the RaiseSignal operaton to notify the runtime of some condition.
The signal semantics are defined totally by the Durra application description of which the pro-
cess Is a component. For example, a task implementation may contain a call to RaiseSignal
with a Signal_Number value of 1. If the application description defines the signal condition 1
for that process, and if the application is in the configuration where the signal condition defini-
tion occurs, then some action (defined by the application description again) will be taken. Oth-
erwise, the signal will be ignored by the Durra runtime.

The Safe operation informs the Durra runtime that the process is at a point in its execution
where it can be reconfigured safely. If no reconfiguration involving this process has been re-
quested, the call returns immediately. Otherwise, the runtime doesn't allow the call to return
to the process until the reconfiguration has completed.

Lacking knowledge of the algorithm being executed by any process, the runtime cannot de-
termine whether or not the process is in the middle of some transaction which must be com-
pleted before a reconfiguration occurs. Therefore, task implementations being designed to be
safely reconfigurable should make use of the Safe operation at strategic points in the code.
Failure to do so may result In the runtime performing the reconfiguration after some time-out
period, whether the process is ready for reconfiguration or not.

7.2 Example Usage of the DurraInterface Package

In this section we show how Durra_Interface services are used in the development of two ex-
ample Durra task Implementations: the producer and consumer tasks from our canonical ex-
ample.

The implementation of a Durra task must be an Ada procedure with a single formal parameter
of predefined type Positive. This value, which is used to establish a unique identifier for the
Durra process at runtime, is passed to the procedure from the Durra cluster manager. Since
each Durra process is a separate thread of control, the duster source code generated by the
Durra compiler uses the subprogram implementing a Durra task as a parameter to a generic
package called ProcessShell. Each instance of ProcessShellcontains an Ada task devoted
to calling the formal subprogram associated with that instance. The form of the Ada code gen-
erated by the Durra compiler is described elsewhere [Doubleday 91].

CMU/SEI-92-TR-36 37

All Durra task implementations will be similar in some respects. An implementation must call
the Init operation first in order to get its ProcessID. It then uses the GetPortiD and

GetTypelD operations to get identifiers for the Durra ports and types that it expects to em-
ploy. All other Durra services are then available, depending on the communication needs of
the particular task. When the task has completed its work, the Finish operation must be used
to notify the Durra runtime.

7.2.1 The Producer Implementation

The Ada subprogram at the end of this section is one possible implementation of the Durra
producer task described earlier. To reduce complexity for purposes of this document, this im-
plementation sends only messages of Durra type Scalar, even though the Durra description
allows sending messages of type Scalar or Byte. The implementation compares the size of
objects of the Durra type Scalarto the size of the objects it intends to transmit, insuring no size
mismatch. The implementation then loops, alternating algorithmic processing with SendPort
and Safe operations. Safe operations should be liberally included in implementations intended
to be dynamically reconfigurable; see the discussion in Section 7.1.10.

The implementation may block when attempting to send its message; this depends on the rate
of message production, the rate of consumption, and the buffer space allotted to the link con-
necting the producer and the consumer processes. This implementation will send messages
indefinitely unless the algorithmic portion of the code modifies the loop condition or some other
system component causes a reconfiguration at runtime. In the former case, the implementa-
tion terminates by calling the Finish operation. In the latter, the implementation will block at the
Safe call and be reactivated only If it survives into the new configuration. The implementation
includes a handler for exceptions that may be raised by Durra operations, as should all imple-
mentations.

with DurraInterface; use DurraInterface;

with Error;

procedure Producer (TaskNumber : in Positive) is

package DI renames DurraInterface;
package E renames Error;

This Process : DI.Process ID;
-- The unique identifier of this process.

OutputPort : DI.OutputPortID;
-- The unique identifier of the output port of this process.

OutputPortType,
-- The unique identifier of the type associated with the output port.

ScalarType : DI.TypeID;
-- The unique identifier of the type of message this process will
-- produce. If OutputPortType is non-union, then these two Type_IDs
-- must be the same. Otherwise, ScalarType must be the same union
-- type or one of the elements of type OutputPortType.

OutputData_Size,
-- The size of data allowed to pass through the output port (zero if
-- the data is variable-length, as in this case).

38 CMU/SEI-92-TR-36

Scalar Size : Natural;
-- The size data objects of type ScalarType.

Scalar Buffer : Natural :- 0;
Some_Condition : Boolean :-True;

begin
DI.Init (TaskNumber, This_Process);
DI.Get PortId (

This_P rocess, "output", OutputPort, OutputData_Size, OutputPortType);
DI.Get_TypeId ("scalar",ScalarType,ScalarSize);
if Scalar Size /- Natural'SIZE/8 then

E.Warning (-Data type mismatch in process " &
DI.GetAttribute (This Process, "process_name"));

else
while Some Condition loop

DI.Safe(This Process);
-- <some algorithm resulting in new data in the ScalarBuffer>
DI.SendPort (This_Process,

Output Port,
ScalarBuffer'ADDRESS,
ScalarSize,
ScalarType);

end loop;
end if;

DI.Finish(This_Process);

exception
when DI.BadPortName ->

E.Warning ("Bad port name in process " &
DI.Get Attribute(This Process, "process_name"));

when DI.BadType_Name ->
E.Warning ("Bad type name in process " &

DI.GetAttribute(This Process, "process_name"));
when others ->

E.Warning ("Unhandled exception raised in process " &
DI.Get_Attribute (This Process, "process_name"));

raise;
end Producer;

7.2.2 The Consumer Implementation
The Ada subprogram at the end of this section Is one possible implementation of the Durra

consumertask described earlier. The implementation compares the size of objects of the Dur-
ra types Scalar and Byte to the size of the objects it expects to receive, insuring no size mis-
match. The implementation then loops until 100 messages have been received.

In this example we show one method by which a programmer can be assured that an Imple-
mentation will not block waiting for communication. Before calling the GetPort operation, the
implementation calls the TestInputPort operation, which determines whether or not an input
message is available to be received. If there is no message, then no GetPort is done.

The example also demonstrates that the Test InputPortoperation can be used to determine
in advance of receipt the type and size of the next message. This is useful when streams of

CMU/SEI-92-TR-36 39

mixed message types or variable length objects can be received through a single port, be-
cause it allows the consuming task to deposit the data in differing locations according to the
type of the data or its storage requirements.

This Implementation of the consumer task raises a signal to the runtime when it has received
all the data it requires. The interpretation of the signal is completely up to the Durra runtime,
as directed by the application description. In our example application description, the signal
raised will cause a reconfiguration from level L I to level L2, but at level L2 the signal is ignored
by the runtime, since no reconfiguration is conditioned on it.
with Durra" T terface; use DurraInterface;

with Error;

procedure Consumer (TaskNumber : in Positive) is

package DI renames DurraInterface;
package E renames Error;

ThisProcess : DI.Process_ID;
-- The unique identifier of this process.

InputPort : DI.InputPortID;
-- The unique identifier of the input port of this process.

InputPortType,
-- The unique identifier of the type associated with the input port.
-- In this case the type is "message", which is the union type composed
-- of the "scalar" and "byte" types.

Input Type,
-- The unique identifier of the type of a received data object.

ScalarType,
-- The unique identifier of the type "scalar".

ByteType : DI.Type_ID;
-- The unique identifier of the type "byte".

InputDataSize,
-- The size of data allowed to pass through the Input port (zero if
-- the data is variable-length, as in this case).

InputSize,
-- The size of a received data object.

ScalarSize,
-- The size of data objects of type ScalarType.

Byte_Size : Natural;
-- The size of data objects of type ByteType.

Scalar Buffer : Natural := 0;
ByteBuffer : Character :- ASCII.NUL;
Some Condition : Boolean :- True;
MessageCount,
InputsAvailable : Natural :- 0;

begin
DI.Init (TaskNumber, ThisProcess);
DI.GetPortId (

ThisProcess, "input", Input_Port, InputDataSize, InputPortType);
DI.GetTypeId ("scalar",Scalar_T3rpe,ScalarSize);
DI.GetTypeId ("byte", ByteType, ByteSize);

40 CMU/SEI-92-TR-36

if Scalar_-Size /- Natural'SIZE/8 or ByteSize /- Character'SIZE/8 then
E.Warning ("Data type mismatch in process " 6

DI.GetAttribute(This Process, "proce~ssnameo));
else

while Message -Count <- 100 loop
DI.Safe(ThisProcess);
DI.Teat_InputPort(

This_-Process, InputPort, Input Type, Input_Size, Inputs Available) ;
if Input3 Available > 0 then
MessageCount :-Message_Count + 1;
if Input -Type -Scalar-Type then
DI.GetPort(ThisProcess,

Input_-Port,
ScalarBuffer'ADDRESS,
Input_-Size,
Input Type);

-- <some algorithm-ic processing>
elsif Input-Type - ByteType then

DI.GetPort(ThisProcess,
InputPort,
Byte 'uffer' ADDRESS,
Inpu~tSize,
Input Type);

-- <some algorith-mic processing>
else
E.Warning("eceived unexpected message type");
exit;

end if;
end if;

end loop;
end if;

DI.RaiseSignal(ThisProcess, 1);
DI.Finis~h(ThisProcess);

exception
when DI.BadPortName ->
E.Warning ("Ba~d port name in process &

DI.GetAttribute(ThisProcess, "process-name"));
when DI. Bad -Type_ Name =>
E.Warning ("Bad type name in process &

DI.GetAttribute(This-Process, "process-name"));
when others ->

E.Warning ("Unhandled exception raised in process &
DI.GetAttribute(ThisProcess, "proce~ssname"));

raise;
end Consumer;

CMU/SEI-92-TR-36 41

42 CMU/SEI-92-TR-36

8 Writing a Durra Channel Implementation

Each channel In a Durra application description Is implemented by an Ada package. The pack-
age defines a task type, from which task objects are declared for each link In the Durra de-
scription. Durra descriptions and Ada implementations of a number of commonly used
channels are provided with the Durra distribution. Programmers are allowed to create addition-
al channel descriptions and implementations. However, unlike a task Implementation, the im-
plementation of a channel requires knowledge of and access to the internals of the Durra
runtime. Development of new channels is therefore more error-prone than development of
new tasks, and should be reserved for the most knowledgable programmers. In this section,
we will identify rules that must be followed when developing channel implementations in order
to ensure correct behavior of the runtime.

To assist in the development of new channel implementations, we provide package specifica-
tion and body templates that may be used as the basis of new development. In the remainder
of this section, we describe those templates and discuss the Implementation of one of the pre-
defined channels, FIFOChannel.

8.1 The Channel Package Specification Template

with TableTypes;
with System; use System;
with DurraInterfaceTypes;

package <insert name>_Channel is

-- FUNCTION
-- This is the template from which additional channel implementation
-- specifications should be constructed.

package TT renames TableTypes;
package DT renames DurraInterface_Tyes3;

TYPES

subtype Port-Range is DT.PortIDRange range 1..<#portsas should all imple
mentations upper bound>;

task type ChannelTask is

pragma Priority (Priority'LAST-1); -- this can be changed.

entry Initialize (TheLink : in TT.LinkTablePtr);

entry Finish;

entry Get Port
ThePort : in TT.Port TablePtr;
DataLocation : in System.Address;

CMUISEI-92-TR-36 43

DataSize out NATURAL;
DataType ID out DT.TypeIDRange_Plus_Null;
Completed out BOOLEAN;
Blocking in BOOLEAN);

entry Get_PortReturn(Port Range)(
Size_of Data -out NATURAL;
TypeID: out DT.Type_IDRange_Plus_Null);

entry SendPort (
ThePort : in TT.PortTablePtr;
Data Location : in System.Address;
DataSize : in POSITIVE;
DataTypeID : in DT.TypeIDRange_Plus_Null;
Completed out BOOLEAN;
Priority : in DT.Message_PriorityRange;
Blocking : in BOOLEAN);

entry SendPortReturn(PortRange);

entry TestInputPort (
ThePort : in TT.PortTablePtr;
TypeofNext_Input : out DT.Type_IDRangePlus_Null;
SizeofNext_Input : out NATURAL;
Inputs_Available out NATURAL);

entry TestOutputPort (
The Port : in TT.PortTablePtr;
SlotsAvailable : out NATURAL);

end ChannelTask;

type ChannelPtr is access Channel_Task;

end <insert name>_Channel;

Durra channel implementations are required to have almost identical specifications. The only

aspects of the specification that an implementor is allowed to change are:

"* the name of the package (required change),

" the upper bound of the subtype PortRange (required change), and

"* the static priority of the Channel Task type (permitted change).

The upper bound of the subtype Port_Range should be set to the larger of the maximum num-
ber of input ports or the maximum number of output ports that will be permitted to connect to
the channel. This upper bound should be as small as Is reasonable, since it determines the
cardinality of the families of Get_PortReturn and SendPortReturn entries in the Chan-
nel Task type.

We consider it wise to leave the priority of the ChannelTask type as defined unless there is
some compelling reason to change it. In the Durra runtime, the highest Ada priority is reserved
for tasks involved in performing reconfigurations. We have assigned the next highest priority
to channel implementations. The reason is that a ChannelTask is required to have reactive

44 CMU/SEI-92-TR-36

behavior. i.e., the task has no work to do unless it is responding to a request from some other

task. Because of this feature, high priority channels will not be in a position to preempt lower

priority tasks for potentially unbounded time. Thus, there is no harm in giving them high prior-

ity. Conversely, low priority channels are more likely to fall behind requests from higher priority

tasks, potentially resulting in more blocking of producers and consumers and therefore higher

message delivery overhead.

8.2 The Channel Package Body Template

with StorageTypes;
with StorageManager;
with ChannelSupport;

package body <insertname>_Channel is

-- FUNCTION
-- This is the template for the package body of new channel
-- implementations for the Durra environment.

-- package TT renames TableTypes in spec
-- package DT renames DurraInterfaceTypes in spec

package ST renames StorageTypes;
package SM renames StorageManager;
package CS renames ChannelSupport;

use Table-Types;

task body Channel Task is
-- <local declarations of buffer space, etc.>

begin
-- Make sure initialization is the first service request filled.
accept Initialize (TheLink : in TT.LinkTablePtr) do

-- <Initialization actions>
end Initialize;

loop
select

-- this allows reinitialization
accept Initialize (TheLink : in TT.LinkTablePtr) do

-- <Initialization actions>
end Initialize;

or
accept Finish;
exit;

or
accept Get Port

The Port : in TT.PortTablePtr;
DataLocation : in System.Address;
Data Size out NATURAL;
DataType_ID out DT.Type ID RangePlusNull;
Completed out BOOLEAN;
Blocking in BOOLEAN) do

-- <forwarding of message to caller or blocking of caller.>
-- <this section must include a test to see if a producer task>
-- <has been blocked waiting for a slot in the buffer to open.>

CMUISEI-92-TR-36 45

-- <if so, then the channel must accept the SendPortReturn>
-- <entry call from the producer task so that it will be unblocked.>

end GetPort;
or

accept Send _Port (
The Port : in TT.PortTablePtr;
Data Location : in System.Address;
DataSize : in POSITIVE;
Data TypeID : in DT.Type_ID RangePlus_Null;
Completed . out BOOLEAN;
Priority : in DT.Message_Priority_Range;
Blocking : in BOOLEAN) do

-- <receipt and storage or forwarding of message happens here.>
-- <this section must include a test to see if a consumer task>
-- <has been blocked waiting for a message to arrive.>
-- <if so, then the channel must accept the GetPortReturn>
-- <entry call from the consumer task so that it will be unblocked.>

end SendPort;
or

accept Test_InputPort (
ThePort : in TT.PortTablePtr;
Type_of_NextInput : out DT.TypeIDRangePlus_Null;
SizeofNextInput : out NATURAL;
Inputs_Available out NATURAL) do

-- <check for available data, return information>
end TestInputPort;

or
accept Test Output-Port

ThePort : in TT.PortTablePtr;
Slots Available : out NATURAL) do

-- <check for available storage space, return information>
end TestOutputPort;

end select;
end loop;

end ChannelTask;

end <insert_name>_Channel;

Unlike their specifications, the package bodies of channel implementations will vary widely ac-
cording to their desired behavior. They will all be structurally similar, though, for which reason
we have provided a package body template.

In each implementation, the ChannelTask shall have the following overall structure:

"• local data declarations

"* an accept statement for the entry Initialize, to ensure that no other entries are
accepted until the channel has been initialized

"* a loop surrounding a selective walt statement with accept alternatives for all
entries (possibly excepting the GetPort_Return and SendPortReturn
families of entries)

The following restrictions are placed on channel implementors:

"* no package-level variables are allowed

"* no executable statements may occur outside of the various rendezvous

46 CMU/SEI-92-TR-36

Package-level data is prohibited because multiple ChannelTask objects may be created from
the same channel package. Concurrent access of package-level data could cause state incon-
sistencies. The restriction of executable statements to within rendezvous guarantees that
ChannelTasks, which have been assigned a high priority, will not preempt the processor
when not servicing a client.

A new channel implementation Is expected to use at least the Durra runtime's storage man-
agement and data transfer facilities, provided as packages StorageManager and Channel -

Support. The use of these packages will be described next in our discussion of an example
channel implementation.

8.3 Example: Our FIFOChannel Implementation
The FIFOChannel is a channel with one input port and one output port. The implementation
guarantees to preserve the arrival ordering of messages in the ordering of message outputs.

The following discussion interleaves fragments of the Ada Implementation of the FIFOChan-
nelwith text describing the important features of the fragment. The conjunction of all the frag-
ments forms a legal Ada package body.

with Data_Queues;
with StorageTypes;
with StorageManager;
with Channel-Support;
with Table Manager;

package body FIFO-Channel is

-- package TT renames Table Types in spec
-- package DT renames DurraInterfaceTypes in spec

package DQ renames DataQueues;
package ST renames StorageTypes;
package SM renames StorageManager;
package CS renames Channel-Support;
package TM renames Table-Manager;

All the packages "withed" in this package are supplied as part of the Durra distribution. The
StorageTypes and StorageManager package provide a storage management facility that
prevents the unchecked growth of allocated storage in the Durra runtime. The Data_Queues
package is an instance of an abstract FIFO queue. The elements of the queue are access ob-
jects pointing to Durra untyped data block records. The TableManager package provides
query functions for the tables generated by the Durra compiler for specific clusters. The Chan-
nel Support package provides operations to abstract the process of transferring data from one
thread of control to another (the transfer may be intra-cluster or inter-cluster.)

use Table-Types;

task body Channel Task is
TheQueue : DQ.Queue;
TheData : ST.QueueElementPtr;

CMU/SEI-92-TR-36 47

The Type : TT.Type_TablePtr;
ProducerBlocked : BOOLEAN :-FALSE;
ConsumerBlocked : BOOLEAN :-FALSE;
Blocked Process : TT.Process Table Ptr;
New_Q__Element : ST.QueueElement_Ptr;

We use a queue to implement the message buffer for this channel. Flags are included to keep
track of whether the producer or consumer processes are blocked. If one of them Is blocked
(only one may be blocked at any given time), then Blocked_ Process identifies it.

begin
-- Make sure initialization is the first service request filled.
accept Initialize (TheLink : in TT.LinkTablePtr) do

DQ.Clear(The_Queue);
DQ.SetBound(TheQueue, TheLink.BufferSize);

end Initialize;

The Initialize entry must be accepted before any other entries. It causes the queue to be
cleared and the queue bound to be set to maximum buffer size for the link. The default buffer
size Is one message, but this can be overridden with the bound attribute in the Durra descrip-
tion of the link. Note that the size of a buffer for any link is expressed in terms of the number
of messages that the link can store. This is independent of the size of the messages them-
selves.

loop
select

-- this allows reinitialization
accept Initialize (TheLink : in TT.LinkTablePtr) do

DQ.Clear(The_Queue);
DQ.SetBound(The_Queue, TheLink.Buffer_Size);

end Initialize;
or

accept Finish;
exit;

In the main loop of the ChannelTask, which is executed until the Finish entry Ls accepted, we
allow acceptance of Initialize again in order to provide for reinitlalization of the link.

or
accept GetPort

The Port : in TT.Port Table Ptr;
DataLocation : in System.Address;
DataSize . out NATURAL;
DataType_ID out DT.TypeIDRangePlus_Null;
Completed . out BOOLEAN;
Blocking in BOOLEAN) do

if DQ.IsEmpty(TheQueue) then
if Blocking then

ConsumerBlocked :- TRUE;
BlockedProcess :- ThePort.OwnerProcess;
BlockedProcess.BlockedDataBuffer :- DataLocation;

end if;
Data Type_ID :- DT.NULLTYPEID;
DataSize :- 0;
Completed :- FALSE;

48 CMU/SEI-92-TR-36

else

CS.Transfer Data From_Queue(
ThePort.OwnerProcess,
Dat a_Location,
DataSize,
Data TypeID,
The_Queue);

Completed :- TRUE;
if Producer Blocked then

Producer Blocked :- FALSE;
accept SendPortReturn(l);

end if;
end if;

end GetPort;

A consumer process Indirectly calls the Get_Port entry of a link when it wishes to receive a
message. If the message queue Is empty, then the link returns values indicating that the re-
quest could not be fulfilled. If the request Is a blocking version, then the link keeps track of the
process that Is blocked and the location where it wants to receive the message. If there is at
least one message In the queue, then the message at the front of the queue is transferred to
the calling process. Since the removal of a message from the queue frees space In the link
buffer, the link must check to see whether the producer attached to its input port is blocked
waiting to deliver a message. If so, the link accepts the Send_PortReturn entry and unblocks
the producer.

or
accept SendPort

The Port : in TT.PortTablePtr;
DataLocation : in System.Address;
DataSize in POSITIVE;
DataType_ID in DT.TypeIDRange_PlusNull;
Completed out BOOLEAN;
Priority in DT.Message_PriorityRange;
Blocking in BOOLEAN) do

if ConsumerBlocked then
ConsumerBlocked :- FALSE;
CS.TransferDatafromProcess-to_Process(

The Port. Owner Process,
Blocked_Proces s,
1,
DataLocation,
DataSize,
DataTypeID);

accept GetPortReturn(l)(
Size of Data : out NATURAL;
Type_ID : out DT.TypeIDRangePlusNull) do

SizeofData := DataSize;
Type_ID :- DataTyrpe_ID;

end GetPortReturn;
Completed :- TRUE;

else
if not Blocking then

-- Check to make sure operation will complete without blocking
-- before actually accepting the data.
if DQ.NextItem_WouldFill (TheQueue) then

CMU/SEI-92-TR-36 49

Completed :- FALSE;
return;

end if;
end if;
New_QElement :- CS.TransferDatafrom Process(

The Port.OwnerProcess,
Data_Location,
Data_Size,
Dat a_TypeID,
1);

DQ.Add (New_Q_Element, TheQueue);
if DQ. Is Full(The_Queue) then

-- Will not be TRUE for non-blocking SendPorts.
BlockedProcess :- ThePort.OwnerProcess;
ProducerBlocked : TRUE;
Conpleted - FALSE;

else
Completed :- TRUE;

end if;
end if;

end SendPort;

A producer process indirectly calls the SendPort entry of a link when it wishes to send a mes-

sage. If the consumer process is already blocked waiting for a message, the message Is trans-

ferred directly to the consumer's address space. The consumer is unblocked by accepting its

Get_PortReturn entry. If the consumer isn't waiting for a message already, then the behavior

depends on whether the producer has requested a blocking or non-blocking Send_Port. If the

request is a non-blocking version, then the link checks to see if this message would fill the

queue and cause the producer to block. If It would, then the link returns a value indicating that

the service request could not be completed. Otherwise, the message is transferred from the

producer address space to the link address space and added to the end of the queue. If the

queue is then full, the producer process will be blocked.

or
accept TestInputPort

The Port : in TT.PortTablePtr;
Type of Next Input : out DT.TypeIDRangePlus_Null;
SizeofNextInput : out NATURAL;
Inputs Available out NATURAL) do

Inputs Available :- DQ.Length_Of (The_Queue);
if not DQ.IsEmpty(The_Queue) then

TheData :- DQ.FrontOf (TheQueue);
TypeofNextInput :- TheData.DataHandle.DataType ID;
Size of NextInput :- TheData.DataHandle.DataSize;

else
TypeofNextInput :- DT.NULLTYPEID;
SizeofNextInput :- 0;

end if;
end TestInputPort;

A consumer process indirectly calls the TestInputPort entry of a link when it wishes to test

for the availability of a message or the size and type of the next message from the port. If the
link buffer is empty, then the link returns values indicating that no message is available. Oth-

50 CMU/SEI-92-TR-36

erwise, the link returns the number of messages available and the Durra type and size of the
first message in the queue.

or
accept TestOutputPort

The Port : in TT.Port Table Ptr;
Slots Available : out NATURAL) do

Slots_Available :- DQ.Bound(The_Queue) - DQ.Length_Of (The_Queue);
end Test_Output-Port;

end select;
end loop;

end ChannelTask;

end FIFO-Channel;

A producer process indirectly calls the TestOutput_Port entry when it wishes to know how
many messages It may send to the specified port before it might block. The link returns the
number of empty message spaces in its buffer.

See the library $DURRAROOT/channels for more example specifications and implementa-
tions of Durra channels.

CMU/SEI-92-TR-36 51

52 CMU/SEI-92-TR-36

9 Durra Configuration Files

Durra applications use a configuration file to specify the mapping of clusters to physical pro-
cessors. A configuration file may be specified as an argument to the Durra compiler, in which
case the configuration information is included in the tables generated in the body of package
Tables. If no compile-time configuration is specified, then the file must be supplied at runtime
as an argument to the cluster programs. A user is permitted to supply a runtime configuration
file argument even if a configuration was specified to the compiler. In that case, the runtime
configuration specification overrides the one compiled.

A configuration fie is a text file containing instructions to the Durra runtime. There are two types
of instructions in a configuration file, the processor instruction and the cluster instruction. All
processor instructions must precede any cluster instructions in the file.

The processor instruction has the following form:

processor processor-name { processor-group-name-list)

The processor-name must be the name of a physical processor in Intemet format (e.g.,
ftp.sei.cmu.edu). The processor name may be followed by a list of logical names for the
processor. The logical names are then considered equivalent to the actual name, unless the
logical name applies to more than one actual processor, in which case the name is equivalent
to the name of any one of the group of processors to which it applies. Here are examples of
processor instructions:

processor ftp.sei.cmu.edu sun4 mysun
processor moby.sei.cmu.edu sun4 yoursun

Given the above processor instructions, a cluster assigned to logical processor mysun could
only be assigned to physical processor ftp.sei.cmu.edu. A cluster assigned to logical proces-
sor sun4, however, could be assigned to either physical processor. In such a case Durra as-
signs the cluster to the host with the fewest clusters already assigned to it.

The cluster instruction has the following form:

cluster cluster-name duster-host-name { cluster-start-up-command)

The duster-name must be the name of a cluster defined in the application description to which
the configuration is being applied. The duster-host-name must be either the actual name or a
logical name of a physical processor identified in a previous processor instruction. Depending
on when the configuration file is specified, either the Durra compiler or the Durra runtime apply
consistency checking to configuration specifications. For example, if Durra processes A and
B are assigned to logical processors X and Y in their respective descriptions, and A and B are
assigned to cluster C in the application description, then the configuration file for the applica-
tion must contain at least one processor instruction identifying a physical processor to which
both logical names X and Y applies. The file must also contain a cluster instruction assigning

CMU/SEI-92-TR-36 53

cluster C to that processor. Otherwise, the Durra compilation/execution terminates with an er-
ror on the assumption that the user is inadvertently attempting to execute a process on a pro-
cessor for which it was not intended.

The cluster-start-up-command is the command that should be used by the Durra_Launcher
(see Section 4.8) on the specified host to execute the cluster. The command is optional; it nev-
er needs to be supplied for the master cluster, since that cluster will always be started by hand
from a shell. It may also be omitted from the cluster instructions for all clusters if the clusters
are to be started independently, without use of the launcher; see Section 11. The command
must be supplied for all non-master clusters if the launcher is to be used.

If the cluster requires an Independent terminal display then the command must cause the ex-
ecution of an xterm(1) process that indirectly executes the cluster. The full path names of all
files to be executed or read must be specified, since the Durra runtime will not search the us-
er's path for files. Following are some examples of cluster instructions that might be used with
our dynamicproducer_consumer example:

cluster cli sun4 /usr/Durra/Manual-User/example/dpc/cll/.sun4/cluster

cluster cll sun4 /usr/IocaVXl/1R4/bin/xterm -title cli -g =80x20-1+0 -e
/usr/projects/Durra/Manual-User/example/dpc/cll/.sun4/cluster
c/usr/projects/hetsim/Durra/Manual-User/example/dpc.config

cluster c12 sun4 /usr/IocaVXl/1 R4/bin/xterm -title c12 -e a.db -L
/usr/projects/Durra/Manual-User/example/dpclcl2/.sun4
/usr/projects/Durra/Manual-User/example/dpc/cl2/.sun4/cluster

The first example simply executes the cluster. The second example executes an xterm(1), giv-
ing it the cluster file name as the name of the program to execute within the window. The ar-
gument to the cluster program is the name of the configuration file that the cluster should read
at runtime. The third example executes an xterm(1) and tells it to execute the Verdix Ada de-
bugger on the cluster program. The configuration file name must be specified within the de-
bugger if it was not already compiled In.

The current limit on the length of lines in the configuration file is 500 characters.

54 CMU/SEI-92-TR-36

10 Compiling and Linking a Durra Application

Once component implementations and specifications have been written, a Durra application
can be compiled and linked Into a set of executable programs, one for each cluster identified
In the application. We will continue to use the dynamic producerconsumer example to illus-
trate this process.

10.1 Durra Compilation and Makefiles
When a library of Durra components is compiled for the first time, it is necessary to create a
Durra library and compile the components by hand in some partial ordering that respects com-
ponent dependencies. In the dynamic _producerconsumer, for example, the declaration of
the type message depends upon the types scalar and byte, so those two type declarations
must be compiled before the message type declaration. We first create a Durra library to con-
tain the component definitions:

dlibrary -c

This command creates the file .DLIBRARY in the current working directory. Since we also in-
tend to use the predefined channel description FIFO, we need to add the predefined channel
library to our Durra library path:

dllbrary -a $DURRAROOT/channels/durra

We can now compile the Durra descriptions in any legal partial ordering:

dall byte.durra
dall scalar.durra
dall message.durra
dall producer.durra
dall consumer.durra
dall -g -rdpc -cdpc.config dynprod-cons.durra

For each successful compilation, the following are created:

"* an intermediate representation of the component, stored In the file with the
same root name and the extension ".TREE"

"* an entry in the .DLIBRARY file pointing to the ".TREE" file
"• a version control file with the same root name and the extension ".MAKE"

Here is the file "producer.durra.MAKE", which is created when "producer.durra" is compiled:
CLROOT -

DFLAGS -

-11i : durra

durra: dependencies producer .durra.TREE

CMU/SEI-92-TR-36 55

dependencies:
cd /u/fs4a/c/hetsim/durra/examples/dynprod cons; dmake message.durra

producer. durra. TREE: producer. durra \
/u/fs4a/c/hetsim/durra/exarples/dyn_prod cons/message .durra .TREE

$(DALLVERSION) $(DFLAGS) producer.durra

cleanentry:
rm producer. durra. TREE

Each ".MAKE" file generated by the Durra compiler will have at least the macro definitions and
target entries shown above. Here Is a brief description of each:

"* CLROOT macro : when defined, defines the cluster root directory
"* DFLAGS macro: defines the list of optional arguments to be applied when

compiling the Durra component

"* "all" target : points only to the "durra" target for non-application descriptions
"* "durra" target: points to the "dependencies" target and the target for the

component's Intermediate representation
"* "dependencies" target: causes dmake to be called for all descriptions on

which this component directly depends. Indirect dependencies are handled
by the ".MAKE" files of the direct dependencies, so that a closure of
dependencies Is formed

"* the "*.TREE" target: checks for any change In the component source file or
the ".TREE" files of any direct dependencies. If any change is found, then
recompiles the component

"• "cleanentry" target : removes the ".TREE" file for the component
Components for which cluster code is generated have more complex .MAKE" files. Here is
the file "dynprodcons.durra. MAKE":

CLROOT - dpc
DFLAGS - -g -r$(CLROOT) -cdpc.config
ARCH - .'arch'
OPT - -v -All

all: durra clusters

durra: dependencies dynprod-cons .durra.TREE

dependencies:
cd /u/fs4a/c/hetsim/durra/channels/durra; dmake fifo.durra
cd /u/fs4a/c/hetsim/durra/examples/dynprod cons; dmake message.durra
cd /u/fs4a/c/hetsim/durra/examples/dynprod-cons; dmake consumer.durra
cd /u/fs4a/c/hetsim/durra/exalnples/dyn_prodfcons; dmake producer.durra

dynprodcons.durra.TREE: dynprod cons.durra \
/u/fs4a/c/hetsim/durra/channels/durra/fifo.durra.TREE \
/u/fs4a/c/hetsim/durra/examples/dynprod cons/message.durra.TREE \
/u/fs4a/c/hetsim/durra/examples/dyn-prod-cons/consumer.durra.TREE \
/u/fs4a/c/hetsim/durra/examles/dyn-prod cons/producer.durra.TREE \

dpc. config
$(DALLVERSION) $(DFLAGS) dynprod-cons.durra

56 CMU/SEI-92-TR-36

clusters:
cd $(CLROOT)/cll; make OPT-'$(OPT)'
cd $(CLROOT)/c12; make OPT-"$(OPT)"

cleanenttry:
rm dyn_prod-cons.durra.TREE

clusterworld:
cd $(CLROOT)/cll; make world OPT-m$(OPT)"
cd $(CLROOT)/c12; make world OPT'N$(OPT)"

world: cleanentry durra clusterworld

Here Is a brief description of the additional entries found in these more complicated ".MAKE"
files:

* ARCH macro : the architecture for which we are compiling the Ada source

* OPT macro : the list of options to use when doing Ada compilations (this Is
VADS-speclfic)

"* "all" target : points to the "custers" target as well as the "durra target

"* "dusters" target : causes each of the duster executables to be checked to
see if recompilation is required

"* "clusterworld" target: forces each of the duster executables to be recompiled
in a fresh Ada library

"* 'world" target: forces a recompilation of both the application description and
the cluster executables

Once the ".MAKE" files have been created, it is no longer necessary or desirable to use the
dall command directly. The dmake command (see Section 4.5) should be used instead.

10.2 Cluster Compilation

As a result of the commands performed in the example in the previous section, the subdirec-
tory "Wc will have been created. That directory will in turn have subdirectorles "cl" and "cl2",
corresponding to the names of the clusters as specified In the application description. Each of
those subdirectories contains a file named "TablesB.a", which In each case contains a Durra
compiler-generated, cluster-specific version of the Tables package body. In order to facilitate
rapid recompilation of the Ada portion of a Durra application, we need to supply a "Makefile"
for each of these cluster subdirectorles. Since the cluster "Makefile" is almost identical in every
case, we supply a template (in the file "$DURRAROOT/misc/ClusterMakefile") that needs
to be modified in only one place. Where indicated, the user must add the names of any Ada
libraries from which component implementations are to be imported. After making this change,
the user saves the new version of the Makefile and distributes it to all cluster subdirectories
via the dmkllb command (see Section 4.4). For example, assuming the current working direc-

CMU/SEI-92-TR-36 57

tory Is directory "dpc" and the new version of "ClusterMakeflie" was saved In the file *my_-

makefie , then we would use the command:

dmkllb -m mymakefile

We are now ready to compile and link the Ada code. Returning to the Durra source directory.
we Issue the command:

dmake dyn_prod cons world

This command checks to make sure that the Durra components are up to date, creates the
Ada libraries for the duster programs, compiles the Tables package bodies and any depen-
dent Ada units that are not up to date, and links each of the cluster programs. We are now
ready to execute the application.

58 CMU/SEI-92-TR-36

11 Executing a Durra Application

Executing a Durra application is easy. There are two steps in the process. The first is to make
sure that the Durra_Launcher (see Section 4.8) is running on each processor required for the
application execution. The second is to start the master cluster (and optionally, the other clus-
ters).

Since each executable Durra cluster program is placed in a file named "cluster", each cluster
must be in a separate directory. The user should change the current working directory to be
the directory containing the master cluster (which, as of this version of Durra, is always the first
cluster named in the application description). The user should then type the cluster command:

cluster (-n) { -cconfiguration-file-name) { -ddebug-level-number)

If the cluster command is entered with no optional arguments, then the master cluster will be
started. It will terminate with an error if no configuration file (see Section 9) was specified for it
at compile time. Otherwise, it will attempt to make contact with the launchers on all machines
identified in the configuration file. It will instruct the launchers to start the subordinate dusters
on the machines to which the clusters are assigned.

If the -n (meaning "no launcher") flag is specified when the master cluster is invoked, then the
master cluster will not attempt to automatically start the subordinate clusters. The subordinate
clusters must then be started by hand from other shells. When starting clusters in this fashion,
it is best to start them in the order in which they are specified in the application description.
The reason is that, in the UNIX implementation, the higher numbered clusters attempt to con-
nect to the lower numbered clusters, which are expected to be waiting for the connection. If
the higher numbered cluster can't make the connection, it will keep attempting to do so for
some time-out period (currently 10 seconds), issuing an error message each time the connec-
tion attempt fails. So, if a user were to start the higher numbered cluster first, then a connection
could be made only If user also gets the lower-numbered cluster started within the time-out
period. In the meantime, the display will fill with error messages. The -n flag has no effect when
specified for any cluster other than the master duster.

If the -c flag is specified when a cluster is invoked, the cluster will use the specified file as the
configuration for the purposes of this execution. A runtime-specified configuration overrides
any compile-time configuration specification. If the dusters are started independently, then
each cluster must be provided with the same configuration file from the command line. Other-
wise, the same file name must be specified for each subordinate cluster in the configuration
file itself, as part of the "command" field of the cluster instruction. Note that Durra assumes
that each cluster will be able to read a common configuration file, even if the clusters are on
separat• machines. The implication of this assumption is that either all processors have ac-
cess to a common networked file system or that a copy of the configuration file is accessible
on each processor's file system. If neither of these conditions is satisfiable, then the configu-
ration must be specified at compile-time.

CMU/SEI-92-TR-36 59

If the -d (meaning "debug") flag is specified then the argument associated with the flag must
be one of the numbers 0, 1, and 2, which correspond to "no debugging", "intermediate debug-
ging", and "full debugging", respectively. The default behavior is "no debugging." When either
of the other two levels is specified, then the cluster will log trace information to a file in the di-
rectory specified by the environment variable DURRALOGDIR (see Section 3.1). "Interme-
diate debugging" gives trace information at the level of Durra_Interface operations (e.g.,
"SendPort completed on port p.output"). "Full debugging" gives trace information at the level
of underlying network operations (e.g., "Received: mailbox 2, data of length 16"). Log files for
"lull debugging" will be quite large. Note that the debugging we are talking about here is de-
bugging of the Durra runtime, via traces included in the Durra runtime. Debugging of applica-
tion code must be done using your Ada debugger.

60 CMU/SEI-92-TR-36

Appendix A VADS Dependencies in Durra

Durra was developed using the Verdix Ada Development System. Although the vast majority

of the Durra source code is portable between Ada compilers, there are a small number of de-

pendencies on non-standard facilities provided with VADS.

It is well-known that the methods for interfacing to other languages (via pragma Interface) vary

slightly according to compiler vendor. The UNIX Implementation of the Durra runtime includes

a large number of interfaces with UNIX system services written in C. These system call inter-

faces may require modification for other compilers.

The implementations of various parts of Durra also depend on some non-standard packages

provided with VADS. The following is a list of these packages, and the Durra units that depend

on them. It is likely that other implementations will supply non-standard packages with equiv-

alent functionality.

"* c_strings provides an abstraction of the C (* char) type. Used by the
package bodies OperatingSystemInterface (in "runtime/unix" directory)
and Utilities (in "compiler" directory), as well as the Durra compiler main unit
(in "compiler" directory).

"* CurrentException: provides a way of identifying by the name an exception
caught in an "others" handler. Used by package body ProcessShell (in
"runtime/lib" directory).

"* Math: provides a library of mathematical functions. Used by package
Random (in "adalib" directory).

"* U Env: provides argv/argc to an Ada program. Used by the package bodies
CoeratingSystemnnterface (in "runtime/unix" directory) and Utilities (in
"compiler" directory), as well as the Durra compiler main unit (in "compiler"
directory).

"* UNIX: provides an abstraction of some UNIX system services. Use by the
compiler main unit (in "compiler" directory).

"* UnsignecL Types: provides unsigned numeric types. Used by the package
body Operating-SystemInterface (in "runtime/unix" directory") and the main
unit of the DurraLauncher (in "launcher" directory).

"• v i bits: provides an abstraction for bit-level logical operations. Used by the
package body Operating-SystemInterface (in "runtime/unix" directory").

"* vIisema : provides a semaphore abstraction. Used by package body
Network (in "runtime/lib" directory).

"* VSemaphores: provides a different semaphore abstraction. Used by
package bodies StorageManager and Taskingj1O (both in "runtime/lib"
directory).

The "makefiles" supplied with the Durra libraries and the ".MAKE" files generated by the Durra

compiler include explicit VADS software tools commands. The makefiles we supply would
have to be changed and the compiler modified to generate different ".MAKE" files in order to
support a different Ada compilation system.

CMU/SEI-92-TR-36 61

62 CMU/SEI-92.TR-36

Appendix B The DurraInterface Package
Specification

Following Is the complete specification of the package Durra_Interface, the API to Durra runt-
ime services:

--I Software Engineering Institute
-- IDurra Language and Runtime Environment

-- The Durra Language and Runtime Environment are distributed under the
-- terms of a Memorandum of Understanding or a Licensing Agreement. Use or
-- distribution of the software is governed by the terms of the
-- appropriate Memorandum of Understanding or Licensing Agreement.

--I (c) Carnegie Mellon University 1989, all rights reserved

with System; use System;

with DurraInterfaceTypes;

package DurraInterface is

-- I Durra Runtime Interface

-- I This package provides an interface to Durra services for Durra
--I application processes.

package DT renames DurrainterfaceTypes;

TYPES

type TypeID is private;
type InputPortID is private;
type OutputPort_ID is private;
type Process_ID is private;

subtype Signal Range is DT.SignalRange;
subtype MessagePriority is DT.MessagePriorityRange;

CONSTANTS

NULL TYPE ID : constant TypeID;
NULLMESSAGEPRIORITY : constant MessagePriority

: DT.NULLMESSAGEPRIORITY;

EXCEPTIONS

CMUISEI-92-TR-36 63

BadPortName : exception;
-- Raised by Get PortId when PortName is not defined for this Process.
Bad Port ID exception;
-- Raised when the Port ID is undefined for the given ProcessID or the
-- port is the wrong direction for the operation.
Bad Process ID : exception;
-- Raised when the Process ID is undefined in the application.
Bad TypeName exception;
-- Raised by Get TypeId when TypeName is not defined for the
-- application.
Bad TypeID : exception;
-- Raised when the TypeID is undefined in the application or when the
-- TypeID is not appropriate for a specified port.
Uninitialized : exception;
-- Raised by any of the interface services (other than Init) when called
-- before the process has done a call to Init.
Already Initialized: exception;
-- Raised by Init when it is called more than once.

VISIBLE SUBPROGRAMS

-- TIME ROUTINES

function GetApplicationTime return DURATION;
-- PARAMETERS
-- None
-- DESCRIPTION
-- Returns the time elapsed since the start of the application of
-- which this process is a component.
-- EXCEPTIONS RAISED
-- None

************** ******* ****** ******************** **** **** **** ***

function Get ProcessTime (Process : in Process_ID) return DURATION;
-- PARAMETERS
-- Process . the process identifier
-- DESCRIPTION
-- Returns the time elapsed since the start of this process.
-- EXCEPTIONS RAISED
-- Uninitialized
-- BadProcessID

function Get DayTime return DURA•TION;
-- PARAMETERS
-- None

64 CMU/SEI-92-TR-36

-- DESCRIPTION
-- Returns the time elapsed since midnight of the current day.
-- EXCEPTIONS RAISED
-- Uninitialized

__******* ********* ** * *****

-- INTERFACE TO DURRA EXECUTIVE

procedure Finish (Process in Process_ID);
-- PARAMETERS
-- Process the process identifier
-- DESCRIPTION
-- Tell the Durra runtime that this Process is finished. No other
-- interface calls are permitted once this call has been issued.
-- EXCEPTIONS RAISED
-- Uninitialized
-- BadProcess_ID

function GetAttribute (Process : in Process ID;
AttributeName : in STRING) return STRING;

-- PARAMETERS
-- Process : the process identifier
-- AttributeName : the (case-insensitive) name of an attribute
-- for which the value should be retrieved.
-- DESCRIPTION
-- Returns the STRING value of the process attribute specified by
-- AttributeName. If no such attribute exists, returns the NULL
-- string.
-- EXCEPTIONS RAISED
-- Uninitialized
-- BadProcess_ID

procedure GetPort (Process in ProcessID;
Port in Input Port ID;
Data in System.Address;
Data Size out NATURAL;
DataType out TypeID);

-- PARAMETERS
-- Process : the process identifier
-- Port : the identifier of the input port on which the
-- Get is to be performed
-- Data : the address of a buffer where the incoming
-- data will be placed
-- Data-Size : the size (in bytes) of the received data
-- Data-Type : the Durra type identifier of the data
-- received.
-- DESCRIPTION
-- Get a message at port Port and deposit it at location Data.
-- It is up to the application task to make sure that the buffer at
-- location Data is large enough to hold the incoming message. The
-- call blocks if there is currently no data to be retrieved at
-- Port.

CMU/SEI-92-TR-36 65

-- EXCEPTIONS RAISED
-- Uninitialized
-- Bad Process ID
-- BadPortID

procedure Get Port (Process : in ProcessID;
Port : in InputPortID;
Data : in System.Address;
DataSize : out NATURAL;
DataType : out Type_ID;
Got Data : out BOOLEAN);

-- PARAMETERS
-- Process : the process identifier
-- Port : the identifier of the input port on which the
-- Get is to be performed
-- Data : the address of a buffer where the incoming
-- data will be placed
-- DataSize : the size (in bytes) of the received data
-- Data-Type : the Durra type identifier of the data
-- received
-- GotData : flag indicating whether or not any data was
-- actually received.
-- DESCRIPTION
-- Non-blocking version of Get Port; if there is a message available,
-- get it as in the blocking version and return GotData - TRUE;
-- otherwise, return GotData - FALSE.
-- EXCEPTIONS RAISED
-- Uninitialized
-- Bad Process ID
-- BadPort_ID

procedure GetPortId (Process in ProcessID;
Port Name in STRING;
Port out InputPortID;
DataSize out NATURAL;
PortType_ID: out Type_ID);

-- PARAMETERS
-- Process : the process identifier
-- PortName : the name of the port whose ID is wanted
-- Port : the identifier of the input port specified by
-- PortName
-- DataSize : the max size (in bytes) of the messages that can
-- pass through this port. If the data type for
-- this port is an unbounded variable length
-- type, then Data Size is 0 by convention. If
-- the data type is a Durra Union type, then
-- DataSize will be set to the size of the
-- largest type in the Union, or to 0 if at least
-- one of the types is unbounded variable length.
-- Port TypeID : the ID of the type associated with the port.
-- DESCRIPTION
-- Get the internal Durra ID of the named port, along with the
-- associated Type_ID and max data size, which are described above.

66 CMU/SEI-92-TR-36

-- EXCEPTIONS RAISED
-- Uninitialized
-- Bad Process ID
-- BadPortName

procedure GetPortId (Process : in Process_ID;
Port Name : in STRING;
Port out OutputPortID;
Data Size out NATURAL;
PortTypeID: out TypeID);

-- PARAMETERS
-- Process : the process identifier
-- PortName : the name of the port whose ID is wanted
-- Port : the identifier of the output port specified by
-- Port Name
-- DataSize : the max size (in bytes) of the messages that can
-- pass through this port. If the data type for
-- this port is an unbounded variable length
-- type, then Data Size is 0 by convention. If
-- the data type is a Durra Union type, then

DataSize will be set to the size of the
largest type in the Union, or to 0 if at least

-- one of the types is unbounded variable length.
-- Port Type_ID : the ID of the type associated with the port.
-- DESCRIPTION
-- Get the internal Durra ID of the named port, along with the
-- associated Type_ID and max data size, which are described above.
-- EXCEPTIONS RAISED
-- Uninitialized
-- Bad Process ID
-- BadPortName

************** ***** ********** **** ****** ****** ** ****** ***** **** *

procedure GetTypeId (Type_Name : in STRING;
Data Type out TypeID;
TypeSize : out NATURAL);

-- PARAMETERS
-- Process : the process identif.n
-- TypeName : the name of the type whose ID is wanted
-- Data-Type : the identifier of the type specified by
-- TypeName
-- Type_Size : the max size (in bytes) of messages of this
-- type. If the type is an unbounded variable
-- length type, then Type_Size is 0 by
-- convention. If the data type is a Durra Union
-- type, then TypeSize will be set to the size
-- of the largest type in the Union, or to 0 if
-- at least one of the types is unbounded
-- variable length.
-- DESCRIPTION
-- Get the internal Durra ID of the named type, along with the
-- type size, which is described above.
-- EXCEPTIONS RAISED
-- Uninitialized

CMU/SEI-92-TR36 67

-- Bad_TypeName

procedure Init (Task SequenceNumber in POSITIVE;
Process_Identifier out Process_ID);

-- PARAMETERS
-- TaskSequenceNumber : the application-unique positive value

passed to a process by the Durra runtime
Process_Identifier : the private encoding of

TaskSequenceNumber, to be used when
calling all other Durra services.

-- DESCRIPTION
-- Establishes presence of this process with the Durra runtime. Must be
-- the first Durra interface call in any application task.
-- EXCEPTIONS RAISED
-- AlreadyInitialized

procedure Raise_Signal (Process : in Process_ID;
SignalNumber : in Signal-Range);

-- PARAMETERS
-- Process : the process identifier
-- SignalNumber : the number of the signal to be raised. The
-- action(s) associated with a signal must be
-- specified in the Durra application
-- description.
-- DESCRIPTION
-- Send a condition signal to the Durra runtime.
-- EXCEPTIONS RAISED
-- Uninitialized
-- BadProcess_ID

procedure Safe (Process : in Process_ID);
-- PARAMETERS
-- Process the process identifier
-- DESCRIPTION
-- Tell the Durra runtime that this Process is safe to reconfigure.
-- EXCEPTIONS RAISED
-- Uninitialized
-- BadProcessID

procedure SendPort (Process : in ProcessID;
Port : in Output_PortID;
Data : in System.Address;
DataSize : in NATURAL;
DataType : in TypeID := NULLTYPEID;
Priority : in MessagePriority

:- NULLMESSAGEPRIORITY);
-- PARAMETERS

68 CMU/SEI-92-TR-36

-- Process : the process identifier
-- Port : the identifier of the output port on which the
-- Send is to be performed
-- Data : the address of a buffer where the outgoing
-- data is located
-- DataSize : the size (in bytes) of the data
-- Data Type : the Durra type identifier of the data. The
-- default is NULLTYPEID, which by convention
-- allows avoidance of port type checking. This
-- feature allows for a more generic application
-- component, but some safety and speed is
-- sacrificed.
-- Priority the priority of this message. Priority will
-- be ignored unless the port is connected to a
-- link which recognizes priorities. For remote
-- communications, Priority will have no effect
-- unless the underlying communication protocol
-- supports message priorities.
-- DESCRIPTION
-- Send data located at address Data to port Port. The
-- call blocks if the buffer associated with the port is full.
-- EXCEPTIONS RAISED
-- Uninitialized
-- BadProcessID
-- BadPortID
-- BadType_ID

procedure SendPort (Process in ProcessID;
Port in Output_PortID;
Data in System.Address;
Data Size : in NATURAL;
Data Sent : out BOOLEAN;
DataType : in TypeID :- NULLTYPEID;
Priority : in MessagePriority

:- NULLMESSAGEPRIORITY);
-- PARAMETERS
-- Process : the process identifier
-- Port : the identifier of the output port on which the
-- Send is to be performed
-- Data : the address of a buffer where the outgoing
-- data is located
-- Data Size : the size (in bytes) of the data
-- DataSent : flag indicating whether or not the data was
-- actually sent.
-- Data Type : the Durra type identifier of the data. The
-- default is NULL TYPEID, which by convention
-- allows avoidance of port type checking. This
-- feature allows for a more generic application
-- component, but some safety and speed is
-- sacrificed.
-- Priority the priority of this message. Priority will
-- be ignored unless the port is connected to a

link which recognizes priorities. For remote
communications, Priority will have no effect
unless the underlying communication protocol
supports message priorities.

CMU/SEI-92-TR-36 69

-- DESCRIPTION
-- Non-blocking version of Send Port. If the queue associated with
-- the port is full, then no daEa is sent and Data Sent is set to
-- FALSE; otherwise the Send proceeds as in the blocking version and
-- Data Sent is set to TRUE.
-- EXCEPTIONS RAISED
-- Uninitialized
-- BadProcessID
-- Bad PortID
-- BadTypeID

procedure Test InputPort
(Process : in ProcessID;
Port : in Input Port ID;
TypeofNextInput : out Type ID;
Size of NextInput : out NATURAL;
InputsAvailable out NATURAL);

-- PARAMETERS
-- Process : the process identifier
-- Port : the identifier of the input port on which the
-- Test is to be performed
-- TypeofNext_Input: the Durra type id of the next message in the
-- queue associated with this port (or
-- NULLTYPEID, if InputsAvailable is zero)
-- Size ofNext_Input: the size (in bytes) of the next message in the
-- buffer associated with this port (or zero, if
-- InputsAvailable is zero).
-- InputsAvailable : the number of message currently available at
-- this port.
-- DESCRIPTION
-- Test for the availability of data at the port Port. If at
-- least one input is available, return the number of inputs
-- available and the Durra type and size of the next input;
-- otherwise, return zero or NULL in all three parameters.
-- EXCEPTIONS RAISED
-- Uninitialized
-- BadProcessID
-- BadPort_ID

procedure TestOutput Port (Process : in ProcessID;
Port : in Output_PortID;
SpacesAvailable : out NATURAL);

-- PARAMETERS
-- Process : the process identifier
-- Port : the identifier of the output port on which the
-- Test is to be performed
-- SpacesAvailable : the number of empty spaces currently in the
-- buffer associated with this port.
-- DESCRIPTION
-- Return the number of empty spaces in the buffer associated with
-- Port.
-- EXCEPTIONS RAISED
-- Uninitialized

70 CMU/SEI-92-TR-36

B- adProcessID
13 ad_-PortID-

private
type Type_ID is new DT.TypeIDRangePlusNull;
type InputPortID is new DT.PortIDRange;
type Output_ Por-t ID is n~ew DT.PortIDRange;
type ProcessID is new DT.ProcessIDRange;

NULLTYPEID :constant TypeID :-
TypeID (DurraInterface Types .NULLTYPEID);

end DurraInterface;

CMU/SEI-92-TR-36 71

72 CMU/SEI-92-TR-36

References

[Barbacci 911 Barbacci, M.R.; D.L. Doubleday; C.B. Weinstock; M.J. Gardner; J.M. Wing.
Durra: A Task-Level Description Language Reference Manual (Version 3)
(CMU/SEI-91-TR-18, ADA246405). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1991.

[Doubleday 91] Doubleday, D.L., M.J. Gardner, C.B. Weinstock. A Description of Cluster
Code Generated by the Durra Compiler (CMU/SEI-91-TR-19, ADA2481 18).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon University,
1991.

CMU/SEI-92-TR-36 73

74 CMU/SEI-92-TR-36

Index

application description 10

channel description 7
channel Implementation 7
cluster 7
cluster manager 11

link 7

port7
process 8

task description 7
task implementation 7

CMU/SEI-92-TR-36 75

76 CMU/SE1492-TR-36

UNIMTED. UNCLASSlqT
SaaUMrY oLASSiWEm c.IO m FIa

REPORT DOCUMENTATION PAGE
Ia. RETORT SECURITY QLASSIFICATION lb. RESTRICTIVE MARK11NGS

Unclassified None

2a. SECURrTY CLASSIFICATION AUTHORITY 3. DiSTIIBUTION/AVAILABUIITY OF REP=
N/A Approved for Public Release

2b, DECLASSIFICAnONIDOWNGRADING SCHEDULE Distribution Unlimited

N/A
4. PERRMING OROANMA N REPORT NUM•ER(S) 5. MONITOBING ORGANIZAION RE1,1POT NUM•ER(S)

CMU/SEI-92-TR-36 ESC-TR-92-036

6a. NAM OF PERFORMINO ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MO1,ITORINO OWGANIZATION

Software Engineering Institute O fabe) SEI Joint Program Office
SEI

6c. ADDRESS (ctM stats, and zp co&) 7b. ADDRESS (my. mate. and zp cods)
Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDINGISPONSORINO 1b. OFFICE SYMBOL 9. POCUtREENT INSTRUMENT IDENTIFICA•ON NUMBER

ORGANIZATION (if) F1962890C0003
SEI Joint Program Office ESC/AVS

Be. ADDRESS (cixty raw, and zip code)) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University ROCE M ET TANK WORK UrNON
Pittsburgh PA 15213 ELEM[EN NO NO. NO NO.63756E N/A N/A N/A

11. TrTH (ncudue Securiy Claifdciami)

Durra: A Task Description Language Users Manual (Version 2)

12. PERSONAL AUTHOR(S)
Dennis L. Doubleday and Mano R. Barbacci

.3a.TYPE OFREPO ltn o1ME E K Dn OFRM yr, a dy) 15. C IoE COUNT
Final FROM TO December 1992 80 pp.
16. SUFPUMNTARY NOTATION

17. COSATI CODES 13. SUBIECT TERMS (ciu an r of n. dmcmuy and dtmiify by black number)

FURD CMoue SU. CIL Durra developers
task level application description language

distributed Ada applications

19. ABS"sACT' (cominuo an sw if uy and idmueify by block number)

This document describes the use of Durra, a task-level application description language, and its associated toolset.
The Durra environment supports the development of highly recordigurable distributed Ada applications. The intended
audience for this document is system managers responsible for Durra installation and Durra application developers.

(peae tua ova)
20. DISTRIBUTION/AVAILABIIJTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSRUID/UNUMIED E SAME AS RKJ DTIC USERS M Unclassified, Unlimited Distribution

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER Oncludc aeam cods) Mc. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/AVS (SEI)

DD FOR•! 1473,33 APR EDITION of I JAN 73 IS OBSOLETE UNI. MITED. UNCLASSIFIED
SbIJURITY CLASSIPICATION OF 7M

ABTAr- mdw hm pp cma. Mock 19

